Parallel distributed-memory simplex for
large-scale stochastic LP problems

Miles Lubin
with Julian Hall (University of Edinburgh),
Cosmin Petra, and Mihai Anitescu

Mathematics and Computer Science Division
Argonne National Laboratory, USA

ERGO Seminar
June 26t 2012

é,«,\ U.S. DEPARTMENT OF
.9/ ENERGY

Overview

= Block-angular structure
= Motivation: stochastic programming and the power grid

= Parallelization of the simplex algorithm for block-angular
linear programs

Large-scale (dual) block-angular LPs

min c¢frg + clx1 + cdxs + ... + chay

S.t. AQZQ — bo,
Tivg + Wia = by,
TIoxq + Waxs = bo,
Tnzo + Wnzny = by,
o >0, 120, 2220, ..., zny=>0.

* In terminology of stochastic LPs:
* First-stage variables (decision now): z,
* Second-stage variables (recourse decision): z,, ..., Ty
* Each diagonal block is a realization of a random variable (scenario)

Why?

= Block-angular structure one of the first structures identified in
linear programming

— Specialized solution procedures dating to late 1950s
= Many, many applications
= We're interested in two-stage stochastic LP problems with a
finite number of scenarios
— Optimization under uncertainty
— Power-grid control under uncertainty

Stochastic Optimization and the Power Grid

= Unit Commitment: Determine optimal on/off schedule of
thermal (coal, natural gas, nuclear) generators. Day-ahead
market prices. (hourly)

— Mixed-integer

= Economic Dispatch: Set real-time market prices. (every 5-10
min.)
— Continuous Linear/Quadratic

= Challenge: Integrate energy produced by highly variable
renewable sources into these control systems.

— Minimize operating costs, subject to:
e Physical generation and transmission constraints
e Reserve levels
e Demand

Variability in Wind Energy

[MW]

Power

0 20 40 60 80 100 120
Time [hr]

Load

\{ 30% Wind
\| 20% Wind

| 10% Wind

Deterministic vs. Stochastic Approach

" To schedule generation, need to know how much wind
energy there will be.

= Deterministic:

— Run weather model once, obtain simple predicted values for
wind. Plug into optimization problem.

= Stochastic:

— Run ensemble of weather models to generate range of possible
wind scenarios. Plug into stochastic optimization problem.

— These are given to us (the optimizers) as input.

Deterministic vs. Stochastic Approach

CED O . @O

12 : : : : : ' '
10f :
8F oF -
o é
: (@) , O
4+ -

Wind speed [m/s]
(0)]

@ D)
66 78 90 102
Local time from June 1% [hours]

= Single predictions may be very inaccurate, but truth usually
falls within range of scenarios.

— Uncertainty Quantification (Constantinescu, et al. 2010)

Stochastic Formulation

min ¢’z + Be[Q(, €))

s.t. Ar = b,
x > 0,

where

_ : T
Qz,§) = min ey

st.Tex + Wy = he,
y = 0.

(some x,y integer)
= Discrete distribution leads to block-angular (MI)LP

Large-scale (dual) block-angular LPs

min c¢frg + clx1 + cdxs + ... + chay

S.t. AQZQ — bo,
Tivg + Wia = by,
TIoxq + Waxs = bo,
Tnzo + Wnzny = by,
o >0, 120, 2220, ..., zny=>0.

* In terminology of stochastic LPs:
* First-stage variables (decision now): z,
* Second-stage variables (recourse decision): z,, ..., Ty
* Each diagonal block is a realization of a random variable (scenario)

10

Difficulties

= May require many scenarios (100s, 1,000s, 10,000s ...) to

accurately model uncertainty
= “lLarge” scenarios (W, up to 100,000 x 100,000)

= “Large” 1t stage (1,000s, 10,000s of variables)

= Easy to build a practical instance that requires 100+ GB of
RAM to solve

=» Requires distributed memory

Plus

" |nteger constraints

11

Existing parallel solution methods

= Based on Benders decomposition
— Classical approach
— Asynchronous work by Linderoth and Wright (2003)
" Linear-algebra decomposition inside interior-point methods
— OOPS (Gondzio and Grothey, 2009)
— PIPS-IPM (Petra, et al.)

— Demonstrated capability to efficiently solve large problems
from scratch

12

Focus on warm starts

= With integer constraints, warm starts necessary inside branch
and bound

= Real-time control (rolling horizons)

= Neither Benders or IPM approaches particularly suitable ...
— Benders somewhat warm-startable using regularization
— IPM warm start possible but limited to ~50% speedup

= But we know an algorithm that is...

13

ldea

= Apply the (revised) simplex method directly to the large
block-angular LP

= Parallelize its operations based on the special structure

= Many practitioners and simplex experts (attendees excluded)
would say that this won’t work

14

Overview of remainder

= The simplex algorithm
= Computational components of the revised simplex method

= Qur parallel decomposition for dual block-angular LPs
= Numerical results

" First experiments with integer constraints

15

LP in standard form

Given a basis, projected LP

Given]
A=[B N]
C::CB CN}
$::CEB ZEN}

min chb B+ (ciy —c5B IN)xy
S.t. B_l(b—N.CEN) >0
L N Z 0

Idea of primal simplex

= Given a basis, define current iterates as
A . —1
LB .— B7b
ZlAiN =0
SN (= CN — NTB_TCB
= Assume g > 0 (primal feasibility)

= |fa component of S (reduced costs) is negative, increasing
the corresponding component of v will decrease the
objective, so long as feasibility is maintained.

18

Mathematical algorithm

= Given a basis and current iterates, identify index g such that
§q < (. (Edge selection)
— If none exists, terminate with an optimal solution.

= Determine maximum step length 0f such that
rB — HPB_lNeq > 0 . (Ratio test)
— Let p be the blocking index with (Zg5 — QPB_lNeq)p = 0.
— If none exists, problem is unbounded.

= Replace the pth variable in the basis with variable ¢. Repeat.

19

Computational algorithm

= Computational concerns:
— Inverting basis matrix
— Solving linear systems with basis matrix
— Matrix-vector products
— Updating basis inverse and iterates after basis change
— Sparsity
— Numerical stability
— Degeneracy

= A modern simplex implementation is over 100k lines of C++
code.

= Will review key components.

20

Computational algorithm (Primal Simplex)

CHUZC: Scan sy for a good candidate g to enter the basis.
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column ¢ of A.
CHUZR: Scan the ratios (Zp);/a;, for the row p of a good candidate to leave the
basis.
Update Zp := 25 — 0 a,, where 07 = (25),/dpq-
BTRAN: Form 7,= B~ le,.
PRICE: Form the pivotal row a, = N'7,,.
Update reduced costs Sy := Sy — QD&p, where 0P = Sq/0pq-
If {growth in representation of B~!} then
INVERT: Form a new representation of B~1.
else
UPDATE: Update the representation of B~! corresponding to the basis
change.
end if

é 21

Edge selection

= Choice in how to select edge to step along
— Rule used has significant effect on the number of iterations

= Dantzig rule (“most negative reduced cost”) is
suboptimal

= |n practice, edge weights used, choosing
q = argiaXs. g 1351 /w;.
— Exact “steepest edge” (Forrest and Goldfarb, 1992)
— DEVEX heuristic (Harris, 1973)

= Extra computational cost to maintain weights, but large
decrease in number of iterations

22

Ratio test

= Also have choice in the ratio test

= “Textbook” ratio test: ¥ = min (£5)s/d4q
— Small values of &iq cause numerical instability
— Fails on practical problems

" |nstead, use two-pass ratio test

— Allow small infeasibilities in order improve numerical stability
— See EXPAND (Gill et al., 1989)

23

Basis inversion and linear solves

= Typically, Markowitz (1957)-type procedure used to form
sparse L U factorization of basis matrix

— LU factorization before “L U factorization” existed

— Gaussian elimination with pivotal row and column chosen
dynamically to reduce fill-in of non-zero elements

— Uncommon factorization outside of simplex; best for special
structure of basis matrices (e.g. many columns of the identity,
highly unsymmetric)

= Need to exploit sparsity in right-hand sides when solving
linear systems (hyper-sparsity, see Hall and McKinnon, 2005)

24

Basis updates

= At every iteration, a column of the basis matrix is replaced.
— Inefficient to recompute factorization from scratch each time.

" Product-form update: (earliest form, Dantzig and Or-H, 1954)
= T
B =B + (aq — Bey)e,

=B(I + (aq — ep)eg), i, = B~ 'a,.

E=(I+ (aq — %)6?)_1 = (I + 7765)
— 1

— B ~ =EB™!

= QOriginally used to invert the basis matrix! (column by column)

= Today, LU factors updated instead (e.g, Forrest and Tomlin,
1972)

25

Decomposition - Structure of the basis matrix

T

T

min cyxo + cr1 + cr2 + ... + CNIN

S.t. ACL‘() = bo,
Tixzg + Wiz = by,
Toxg + Waxo = bo,
Tnxo + Wyzy = by,
ro >0, 120, 202>0, ..., znxy>0.

°‘_ 26

Key linear algebra

= QObservation: Eliminating lower-triangular elements in
diagonal blocks causes no structure-breaking fill-in

= QObservation: May be performed in parallel

A
A

27

Key linear algebra - Implicit LU factorization

1. Factor diagonal blocks in parallel
2. Collect rows of square bottom-right first-stage system

3. Factor first-stage system

A
A

28

Implementation

= New codebase “PIPS-S”
— C++, MPI

— Reuses many primitives (vectors, matrices) from open-source
CoinUtils

— Algorithmic implementation written from scratch
— Implements both primal and dual simplex

29

Implementation - Distribution of data

= Before reviewing operations, important to keep in mind
distribution of data

= Targeting distributed-memory architectures (MPI) in order to
solve large problems.

» Given P MPI processes and N (2 P) second-stage scenarios,
assign each scenario to one MPI process.

= Second-stage data and iterates only stored on respective
process. =»Scalable

= First-stage data and iterates duplicated in each process.

min cho + crfxl + chg + ... + c}{}xN

s.t. A.’,EO = bo,
Tvxg + Wiz = by,
TQ.’I?() + WQLUQ = b27
Tnzo + Wyzny = by,

x0>0, 2120, 2220, ..., zn2=>0.

30

Computational algorithm (Primal Simplex)

CHUZC: Scan sy for a good candidate g to enter the basis.
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column ¢ of A.
CHUZR: Scan the ratios (Zp);/a;, for the row p of a good candidate to leave the
basis.
Update Zp := 25 — 0 a,, where 07 = (25),/dpq-
BTRAN: Form 7,= B~ le,.
PRICE: Form the pivotal row a, = N'7,,.
Update reduced costs Sy := Sy — QD&p, where 0P = Sq/0pq-
If {growth in representation of B~!} then
INVERT: Form a new representation of B~1.
else
UPDATE: Update the representation of B~! corresponding to the basis
change.
end if

b 3

Implementation - Basis Inversion (INVERT)

= Want to reduce non-zero fill-in both in diagonal blocks and on
the border

— Determined by choice of row/column permutations

= Modify existing L U factorization to handle this, by giving as
input the augmented system

[W?lB TiB } 9
and restricting column pivots to the W5 block.

= |mplemented by modifying CoinFactorization (John
Forrest) of open-source CoinUtils package.

= Collect non-pivotal rows from each process, forming first-
stage system. Factor first-stage system identically in each MPI
process.

32

Implementation - Linear systems with basis matrix
(FTRAN)

= QObtain procedure to solve linear systems with basis matrix by
following math for inversion procedure; overview below:

Triangular solve for each scenario (parallel)
Gather result from each process (communication)
Solve first-stage system (serial)

W Noe

Matrix-vector product and triangular solve for each scenario
(parallel)

33

Implementation - Linear systems with basis
transpose (BTRAN)

1. Triangular solve and matrix-vector product for each scenario
(parallel)

Sum contributions from each process (communication)

Solve first-stage system (serial)
4. Triangular solve for each scenario (parallel)

34

Implementation - Matrix-vector product with non-
basic columns (PRICE)

C W ™1 [m] | (W) Ty '
g 5| | (W3)Tr
wy Ty TN (W) ' rN

i AN L mo | L AN T+ S (TN T

= Parallel procedure evident from above:

1. Compute (W) 'm;, (TN) ' m; terms (parallel)

2. Form Zé\il(TiN)Tm (communication, MPI _Allreduce)
3. Form (AN)T'ny (serial)

35

Implementation - Edge selection and ratio test

= Straightforward parallelization

= Each process scans through its local variables, then
MPI Allreduce determines the maximum/minimum across
processes and its corresponding owner

36

Implementation - Basis updates

B '=FE,.. E,E,B”!

T
= Consider operations to apply “eta” matrix to a right-hand side:

Bz = (I + megi)w = (z + xp,M)

= What if pivotal element Tp, is only stored on one MPI
process?

— Would need to perform a broadcast operation for every eta
matrix; huge communication overhead

= Developed a procedure that requires only one communication
per sequence of eta matrices.

37

Numerical Experiments

= Comparisons with highly-efficient serial solver Clp

= Presolve and internal rescaling disabled (not implemented in
PIPS-S)

= 10°®feasibility tolerances used

= Preview of conclusions before the numbers:
— Clp 2-4x faster in serial

— Significant speedups (up to 100x, typically less) over Clp in
parallel

— Solves problems that don’t fit in memory on a single machine

38

Test problems

Test Ist Stage 2nd-Stage Scenario Nonzero Elements

Problem Vars. Cons. Vars. Cons. A W, T;
Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89
UC12 3,132 0 956,532 59,436 0 163,839 3,132
UuC24 6,264 0 113,064 118,872 0 327,939 6,264

= Storm and SSN used by Linderoth and Wright
= UC12 and UC24 developed by Victor Zavala
= Scenarios generated by Monte-Carlo sampling

39

UC12 and UC24

= Stochastic Unit Commitment models with 12-hour and 24-
hour planning horizons over the state of Illinois.

= |ncludes (DC) transmission constraints.

43—

° Latitude N

w w LN EaN N
oo O (] — N
|
|
\ Il
|

|

\

W
~

92 90
° Longitude W

-88

Architectures

= “Fusion” high-performance cluster at Argonne
— 320 nodes

— InfiniBand QDR interconnect
— Two 2.6 Ghz Xeon processors per node (total 8 cores)
— Most nodes have 36 GB of RAM, some have 96 GB
= “Intrepid” Blue Gene/P supercomputer
— 40,960 nodes
— Custom interconnect

— Each node has quad-core 850 Mhz PowerPC processor, 2 GB RAM

41

Large problems with advanced starts

= Solves “from scratch” not particularly of interest

= Consider large problems that require “high-memory” (96GB)
nodes of Fusion cluster

— 20-40 Million total variables/constraints
= Advanced starting bases in the context of:

— Using solution to subproblem with a subset of scenarios to
generate a starting basis for extensive form

e Storm and SSN

e Not included in time to solution

— Simulate branch and bound (reoptimize after modifying bounds)
e UC12 and UC24

42

Storm and SSN - 32,768 scenarios

Test Iter./
Problem Solver Nodes Cores Sec.
Storm Clp 1 1 2.2
PIPS-S 1 1 1.3
" 1 4 10.0
" 1 8 22.4
" 2 16 47.6
" 4 32 93.9
" 8 64 158.8
" 16 128 216.6
" 32 256 260.4
SSIN Clp 1 1 2.0
PIPS-S 1 1 0.8
" 1 4 4.1
" 1 8 10.5
" 2 16 22.9
" 4 32 46.8
" 8 64 92.8
" 16 128 143.3

" 32 256 180.0

43

UC12 (512 scenarios) and UC24 (256 scenarios)

Test Avg.
Problem Solver = Nodes Cores Iter./Sec
UC12 Clp 1 1 0.73
PIPS-S 1 1 0.34
' 1 8 2.5
' 2 16 4.7
' 4 32 8.8
' 8 64 14.9
' 16 128 20.9
' 32 256 25.8
UucC24 Clp 1 1 0.87
PIPS-S 1 1 0.36
' 1 8 2.4
' 2 16 4.4
' 4 32 8.2
' 8 64 14.8
' 16 128 23.2
' 32 256 28.7

44

Very big instance

= UC12 with 8,192 scenarios
— 463,113,276 variables and 486,899,712 constraints

= Advanced starting basis from solution to problem with 4,096
scenarios

= Solved to optimal basis in 86,439 iterations (4.6 hours) on
4,096 nodes of Blue Gene/P (2 MPI processes per node)

= Would require ~1TB of RAM to solve in serial (so no
comparison with Clp)

45

Performance analysis

= Simple performance model for execution time of an operation:
max{t,} + ¢+ to,
p

where ¢, is the time spent by process p on its local second-stage
calculations, cis the communication cost, and ¢, is the time spent
on the first-stage calculations.

= Limits to scalability:
— Load imbalance: max,{t,} — % Zle lp
— Communication cost: ¢
— Serial bottleneck: ¢,

= |nstrumented matrix-vector product (PRICE) to compute these
guantities

46

Matrix-vector product with non-basic columns
(PRICE)

C W ™1 [m] | (W) Ty '
g 5| | (W3)Tr
wy Ty TN (W) ' rN

i AN L mo | L AN T+ S (TN T

1. Compute (W) 'm;, (TN) ' m; terms (parallel)

N
2. Form Zizl(TiN)TWi (communication, MPI _Allreduce)
3. Form (AN)T'ny (serial)

47

Performance analysis - “Large” instances

Load Comm. Serial Total
Test Imbal. Cost Bottleneck Time/Iter.
Problem Nodes Cores (us) (us) (us) (ps)
Storm 1 1 0 0 1.0 13,243
1 8 88 33 0.8 1,635
2 16 40 68 0.9 856
4 32 25 105 0.9 512
8 64 26 112 1.0 326
16 128 11 102 0.9 205
32 256 34 253 0.8 333
SSN 1 1 0 0 0.8 2,229
1 8 18 23 0.8 305
2 16 25 54 0.8 203
4 32 14 68 0.7 133
8 64 12 65 0.7 100
16 128 10 87 0.6 106
32 256 8 122 0.6 135

48

Performance analysis - “Large” instances

Load Comm. Serial Total
Test Imbal. Cost Bottleneck Time/Iter.
Problem Nodes Cores (us) (us) (us) (us)
Uci2 1 1 0 0 6.8 24,291
1 8 510 183 6.0 4,785
2 16 554 274 6.0 2,879
4 32 563 327 6.0 1,921
8 64 542 355 6.0 1,418
16 128 523 547 6.0 1,335
32 256 519 668 5.8 1,323
UuC24 1 1 0 0 11.0 28,890
1 3 593 259 9.8 2,983
2 16 543 315 9.7 3,436
4 32 551 386 9.6 2,248
8 64 509 367 9.5 1,536
16 128 538 718 9.5 1,593
32 256 584 1413 9.5 2,170

49

Performance analysis

= First-stage calculation bottleneck relatively insignificant
= Load imbalance depends on problem
— Caused by exploiting hyper-sparsity
= Communication cost significant, but small enough to allow for
significant speedups
— Speedups on Fusion unexpected
— High-performance interconnects (Infiniband)

50

Back to what we wanted to solve - Preliminary
results

= First-stage variables in UC12 are binary on/off generator states
= With 64 scenarios (3,621,180 vars., 3,744,468 cons., 3,132 binary)
— LP Relaxation: 939,208
— LP Relaxation + CglProbing cuts: 939,626
— Feasible solution from rounding: 942,237
— Optimality Gap: 0.27% (0.5% is acceptable in practice)
— Starting with optimal LP basis:

e 1 hour with PIPS-S on 4 nodes (64 cores) of Fusion
e 4.75 hours with Clp in serial

= Further decrease in gap by better primal heuristics and more cut
generators

= UC12 can be “solved” at the root node!

— Reported in literature for similar deterministic model

51

Conclusions

= Simplex method is parallelizable for dual block-angular LPs

= Significant speedups over highly-efficient serial solvers possible
on a high-performance cluster on appropriately sized problems

= Sequences of large-scale block-angular LPs can now be solved
efficiently in parallel

= Path forward for block-angular MILPs

— Solve stochastic unit commitment problem at root node?
— Parallel simplex inside parallel branch and bound?

52

Conclusions

= Communication intensive optimization algorithms can
successfully scale on today’s high-performance clusters

— Each simplex iteration has ~10 collective (broadcast/all-to-all)
communication operations.

— Observed 100s of iterations per second.
— Communication cost is order of 10s/100s of microseconds

e Used to be order of milliseconds

53

Thank you!

I —

