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Overview

= Block-angular structure
= Motivation: stochastic programming and the power grid

= Parallelization of the simplex algorithm for block-angular
linear programs




Large-scale (dual) block-angular LPs

min  c¢frg + clx1 + cdxs + ... +  chay

S.t. AQZQ — bo,
Tivg + Wia = by,
TIoxq + Waxs = bo,
Tnzo + Wnzny = by,
o >0, 120, 2220, ..., zny=>0.

* In terminology of stochastic LPs:
* First-stage variables (decision now): z,
* Second-stage variables (recourse decision): z,, ..., Ty
* Each diagonal block is a realization of a random variable (scenario)



Why?

= Block-angular structure one of the first structures identified in
linear programming

— Specialized solution procedures dating to late 1950s
= Many, many applications
= We're interested in two-stage stochastic LP problems with a
finite number of scenarios
— Optimization under uncertainty
— Power-grid control under uncertainty



Stochastic Optimization and the Power Grid

= Unit Commitment: Determine optimal on/off schedule of
thermal (coal, natural gas, nuclear) generators. Day-ahead
market prices. (hourly)

— Mixed-integer

= Economic Dispatch: Set real-time market prices. (every 5-10
min.)
— Continuous Linear/Quadratic

= Challenge: Integrate energy produced by highly variable
renewable sources into these control systems.

— Minimize operating costs, subject to:
e Physical generation and transmission constraints
e Reserve levels
e Demand
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Deterministic vs. Stochastic Approach

" To schedule generation, need to know how much wind
energy there will be.

= Deterministic:

— Run weather model once, obtain simple predicted values for
wind. Plug into optimization problem.

= Stochastic:

— Run ensemble of weather models to generate range of possible
wind scenarios. Plug into stochastic optimization problem.

— These are given to us (the optimizers) as input.



Deterministic vs. Stochastic Approach
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= Single predictions may be very inaccurate, but truth usually
falls within range of scenarios.

— Uncertainty Quantification (Constantinescu, et al. 2010)



Stochastic Formulation

min ¢’z + Be[Q(, €))

s.t. Ar = b,
x > 0,

where

_ : T
Qz,§) = min ey

st.Tex + Wy = he,
y = 0.

(some x,y integer)
= Discrete distribution leads to block-angular (MI)LP




Large-scale (dual) block-angular LPs

min  c¢frg + clx1 + cdxs + ... +  chay

S.t. AQZQ — bo,
Tivg + Wia = by,
TIoxq + Waxs = bo,
Tnzo + Wnzny = by,
o >0, 120, 2220, ..., zny=>0.

* In terminology of stochastic LPs:
* First-stage variables (decision now): z,
* Second-stage variables (recourse decision): z,, ..., Ty
* Each diagonal block is a realization of a random variable (scenario)
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Difficulties

= May require many scenarios (100s, 1,000s, 10,000s ...) to

accurately model uncertainty
= “lLarge” scenarios (W, up to 100,000 x 100,000)

= “Large” 1t stage (1,000s, 10,000s of variables)

= Easy to build a practical instance that requires 100+ GB of
RAM to solve

=» Requires distributed memory

Plus

" |nteger constraints
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Existing parallel solution methods

= Based on Benders decomposition
— Classical approach
— Asynchronous work by Linderoth and Wright (2003)
" Linear-algebra decomposition inside interior-point methods
— OOPS (Gondzio and Grothey, 2009)
— PIPS-IPM (Petra, et al.)

— Demonstrated capability to efficiently solve large problems
from scratch
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Focus on warm starts

= With integer constraints, warm starts necessary inside branch
and bound

= Real-time control (rolling horizons)

= Neither Benders or IPM approaches particularly suitable ...
— Benders somewhat warm-startable using regularization
— IPM warm start possible but limited to ~50% speedup

= But we know an algorithm that is...
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ldea

= Apply the (revised) simplex method directly to the large
block-angular LP

= Parallelize its operations based on the special structure

= Many practitioners and simplex experts (attendees excluded)
would say that this won’t work
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Overview of remainder

= The simplex algorithm
= Computational components of the revised simplex method

= Qur parallel decomposition for dual block-angular LPs
= Numerical results

" First experiments with integer constraints
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LP in standard form



Given a basis, projected LP

Given ]
A=[B N ]
C::CB CN}
$::CEB ZEN}

min chb B+ (ciy —c5B IN)xy
S.t. B_l(b—N.CEN) >0
L N Z 0



Idea of primal simplex

= Given a basis, define current iterates as
A . —1
LB .— B7b
ZlAiN =0
SN (= CN — NTB_TCB
= Assume g > 0 (primal feasibility)

= |fa component of S (reduced costs) is negative, increasing
the corresponding component of v will decrease the
objective, so long as feasibility is maintained.
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Mathematical algorithm

= Given a basis and current iterates, identify index g such that
§q < (. (Edge selection)
— If none exists, terminate with an optimal solution.

= Determine maximum step length 0f such that
rB — HPB_lNeq > 0 . (Ratio test)
— Let p be the blocking index with (Zg5 — QPB_lNeq)p = 0.
— If none exists, problem is unbounded.

= Replace the pth variable in the basis with variable ¢. Repeat.
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Computational algorithm

= Computational concerns:
— Inverting basis matrix
— Solving linear systems with basis matrix
— Matrix-vector products
— Updating basis inverse and iterates after basis change
— Sparsity
— Numerical stability
— Degeneracy

= A modern simplex implementation is over 100k lines of C++
code.

= Will review key components.
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Computational algorithm (Primal Simplex)

CHUZC: Scan sy for a good candidate g to enter the basis.
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column ¢ of A.
CHUZR: Scan the ratios (Zp);/a;, for the row p of a good candidate to leave the
basis.
Update Zp := 25 — 0 a,, where 07 = (25),/dpq-
BTRAN: Form 7,= B~ le,.
PRICE: Form the pivotal row a, = N'7,,.
Update reduced costs Sy := Sy — QD&p, where 0P = Sq/0pq-
If {growth in representation of B~!} then
INVERT: Form a new representation of B~1.
else
UPDATE: Update the representation of B~! corresponding to the basis
change.
end if
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Edge selection

= Choice in how to select edge to step along
— Rule used has significant effect on the number of iterations

= Dantzig rule (“most negative reduced cost”) is
suboptimal

= |n practice, edge weights used, choosing
q = argiaXs. g 1351 /w;.
— Exact “steepest edge” (Forrest and Goldfarb, 1992)
— DEVEX heuristic (Harris, 1973)

= Extra computational cost to maintain weights, but large
decrease in number of iterations
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Ratio test

= Also have choice in the ratio test

= “Textbook” ratio test: ¥ = min (£5)s/d4q
— Small values of &iq cause numerical instability
— Fails on practical problems

" |nstead, use two-pass ratio test

— Allow small infeasibilities in order improve numerical stability
— See EXPAND (Gill et al., 1989)
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Basis inversion and linear solves

= Typically, Markowitz (1957)-type procedure used to form
sparse L U factorization of basis matrix

— LU factorization before “L U factorization” existed

— Gaussian elimination with pivotal row and column chosen
dynamically to reduce fill-in of non-zero elements

— Uncommon factorization outside of simplex; best for special
structure of basis matrices (e.g. many columns of the identity,
highly unsymmetric)

= Need to exploit sparsity in right-hand sides when solving
linear systems (hyper-sparsity, see Hall and McKinnon, 2005)
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Basis updates

= At every iteration, a column of the basis matrix is replaced.
— Inefficient to recompute factorization from scratch each time.

" Product-form update: (earliest form, Dantzig and Or-H, 1954)
= T
B =B + (aq — Bey)e,

=B(I + (aq — ep)eg), i, = B~ 'a,.

E=(I+ (aq — %)6?)_1 = (I + 7765)
— 1

— B ~ =EB™!

= QOriginally used to invert the basis matrix! (column by column)

= Today, LU factors updated instead (e.g, Forrest and Tomlin,
1972)
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Decomposition - Structure of the basis matrix

T

T

min cyxo + cr1 + cr2 + ... +  CNIN

S.t. ACL‘() = bo,
Tixzg + Wiz = by,
Toxg + Waxo = bo,
Tnxo + Wyzy = by,
ro >0, 120, 202>0, ..., znxy>0.
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Key linear algebra

= QObservation: Eliminating lower-triangular elements in
diagonal blocks causes no structure-breaking fill-in

= QObservation: May be performed in parallel

A
A
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Key linear algebra - Implicit LU factorization

1. Factor diagonal blocks in parallel
2. Collect rows of square bottom-right first-stage system

3. Factor first-stage system

A
A
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Implementation

= New codebase “PIPS-S”
— C++, MPI

— Reuses many primitives (vectors, matrices) from open-source
CoinUtils

— Algorithmic implementation written from scratch
— Implements both primal and dual simplex
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Implementation - Distribution of data

= Before reviewing operations, important to keep in mind
distribution of data

= Targeting distributed-memory architectures (MPI) in order to
solve large problems.

» Given P MPI processes and N (2 P) second-stage scenarios,
assign each scenario to one MPI process.

= Second-stage data and iterates only stored on respective
process. =»Scalable

= First-stage data and iterates duplicated in each process.

min cho + crfxl + chg + ... + c}{}xN

s.t. A.’,EO = bo,
Tvxg + Wiz = by,
TQ.’I?() + WQLUQ = b27
Tnzo + Wyzny = by,

x0>0, 2120, 2220, ..., zn2=>0.
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Computational algorithm (Primal Simplex)

CHUZC: Scan sy for a good candidate g to enter the basis.
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column ¢ of A.
CHUZR: Scan the ratios (Zp);/a;, for the row p of a good candidate to leave the
basis.
Update Zp := 25 — 0 a,, where 07 = (25),/dpq-
BTRAN: Form 7,= B~ le,.
PRICE: Form the pivotal row a, = N'7,,.
Update reduced costs Sy := Sy — QD&p, where 0P = Sq/0pq-
If {growth in representation of B~!} then
INVERT: Form a new representation of B~1.
else
UPDATE: Update the representation of B~! corresponding to the basis
change.
end if
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Implementation - Basis Inversion (INVERT)

= Want to reduce non-zero fill-in both in diagonal blocks and on
the border

— Determined by choice of row/column permutations

= Modify existing L U factorization to handle this, by giving as
input the augmented system

[ W?lB TiB } 9
and restricting column pivots to the W5 block.

= |mplemented by modifying CoinFactorization (John
Forrest) of open-source CoinUtils package.

= Collect non-pivotal rows from each process, forming first-
stage system. Factor first-stage system identically in each MPI
process.
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Implementation - Linear systems with basis matrix
(FTRAN)

= QObtain procedure to solve linear systems with basis matrix by
following math for inversion procedure; overview below:

Triangular solve for each scenario (parallel)
Gather result from each process (communication)
Solve first-stage system (serial)

W Noe

Matrix-vector product and triangular solve for each scenario
(parallel)
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Implementation - Linear systems with basis
transpose (BTRAN)

1. Triangular solve and matrix-vector product for each scenario
(parallel)

Sum contributions from each process (communication)

Solve first-stage system (serial)
4. Triangular solve for each scenario (parallel)
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Implementation - Matrix-vector product with non-
basic columns (PRICE)

C W ™1 [m] | (W) Ty '
g 5| | (W3)Tr
wy Ty TN (W) ' rN

i AN L mo | L AN T+ S (TN T

= Parallel procedure evident from above:

1. Compute (W) 'm;, (TN) ' m; terms (parallel)

2. Form Zé\il(TiN)Tm (communication, MPI _Allreduce)
3. Form (AN)T'ny (serial)
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Implementation - Edge selection and ratio test

= Straightforward parallelization

= Each process scans through its local variables, then
MPI Allreduce determines the maximum/minimum across
processes and its corresponding owner
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Implementation - Basis updates

B '=FE,.. E,E,B”!

T
= Consider operations to apply “eta” matrix to a right-hand side:

Bz = (I + megi)w = (z + xp,M)

= What if pivotal element Tp, is only stored on one MPI
process?

— Would need to perform a broadcast operation for every eta
matrix; huge communication overhead

= Developed a procedure that requires only one communication
per sequence of eta matrices.
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Numerical Experiments

= Comparisons with highly-efficient serial solver Clp

= Presolve and internal rescaling disabled (not implemented in
PIPS-S)

= 10°®feasibility tolerances used

= Preview of conclusions before the numbers:
— Clp 2-4x faster in serial

— Significant speedups (up to 100x, typically less) over Clp in
parallel

— Solves problems that don’t fit in memory on a single machine
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Test problems

Test Ist Stage 2nd-Stage Scenario Nonzero Elements

Problem Vars. Cons. Vars. Cons. A W, T;
Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89
UC12 3,132 0 956,532 59,436 0 163,839 3,132
UuC24 6,264 0 113,064 118,872 0 327,939 6,264

= Storm and SSN used by Linderoth and Wright
= UC12 and UC24 developed by Victor Zavala
= Scenarios generated by Monte-Carlo sampling
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UC12 and UC24

= Stochastic Unit Commitment models with 12-hour and 24-
hour planning horizons over the state of Illinois.

= |ncludes (DC) transmission constraints.
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Architectures

= “Fusion” high-performance cluster at Argonne
— 320 nodes

— InfiniBand QDR interconnect
— Two 2.6 Ghz Xeon processors per node (total 8 cores)
— Most nodes have 36 GB of RAM, some have 96 GB
= “Intrepid” Blue Gene/P supercomputer
— 40,960 nodes
— Custom interconnect

— Each node has quad-core 850 Mhz PowerPC processor, 2 GB RAM
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Large problems with advanced starts

= Solves “from scratch” not particularly of interest

= Consider large problems that require “high-memory” (96GB)
nodes of Fusion cluster

— 20-40 Million total variables/constraints
= Advanced starting bases in the context of:

— Using solution to subproblem with a subset of scenarios to
generate a starting basis for extensive form

e Storm and SSN

e Not included in time to solution

— Simulate branch and bound (reoptimize after modifying bounds)
e UC12 and UC24
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Storm and SSN - 32,768 scenarios

Test Iter./
Problem Solver Nodes Cores Sec.
Storm Clp 1 1 2.2
PIPS-S 1 1 1.3
" 1 4 10.0
" 1 8 22.4
" 2 16 47.6
" 4 32 93.9
" 8 64 158.8
" 16 128 216.6
" 32 256 260.4
SSIN Clp 1 1 2.0
PIPS-S 1 1 0.8
" 1 4 4.1
" 1 8 10.5
" 2 16 22.9
" 4 32 46.8
" 8 64 92.8
" 16 128 143.3

" 32 256 180.0
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UC12 (512 scenarios) and UC24 (256 scenarios)

Test Avg.
Problem Solver = Nodes Cores Iter./Sec
UC12 Clp 1 1 0.73
PIPS-S 1 1 0.34
' 1 8 2.5
' 2 16 4.7
' 4 32 8.8
' 8 64 14.9
' 16 128 20.9
' 32 256 25.8
UucC24 Clp 1 1 0.87
PIPS-S 1 1 0.36
' 1 8 2.4
' 2 16 4.4
' 4 32 8.2
' 8 64 14.8
' 16 128 23.2
' 32 256 28.7
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Very big instance

= UC12 with 8,192 scenarios
— 463,113,276 variables and 486,899,712 constraints

= Advanced starting basis from solution to problem with 4,096
scenarios

= Solved to optimal basis in 86,439 iterations (4.6 hours) on
4,096 nodes of Blue Gene/P (2 MPI processes per node)

= Would require ~1TB of RAM to solve in serial (so no
comparison with Clp)
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Performance analysis

= Simple performance model for execution time of an operation:
max{t,} + ¢+ to,
p

where ¢, is the time spent by process p on its local second-stage
calculations, cis the communication cost, and ¢, is the time spent
on the first-stage calculations.

= Limits to scalability:
— Load imbalance: max,{t,} — % Zle lp
— Communication cost: ¢
— Serial bottleneck: ¢,

= |nstrumented matrix-vector product (PRICE) to compute these
guantities
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Matrix-vector product with non-basic columns
(PRICE)

C W ™1 [m] | (W) Ty '
g 5| | (W3)Tr
wy Ty TN (W) ' rN

i AN L mo | L AN T+ S (TN T

1. Compute (W) 'm;, (TN) ' m; terms (parallel)

N
2. Form Zizl(TiN)TWi (communication, MPI _Allreduce)
3. Form (AN)T'ny (serial)

47



Performance analysis - “Large” instances

Load  Comm. Serial Total
Test Imbal. Cost Bottleneck  Time/Iter.
Problem Nodes Cores (us) (us) (us) (ps)
Storm 1 1 0 0 1.0 13,243
1 8 88 33 0.8 1,635
2 16 40 68 0.9 856
4 32 25 105 0.9 512
8 64 26 112 1.0 326
16 128 11 102 0.9 205
32 256 34 253 0.8 333
SSN 1 1 0 0 0.8 2,229
1 8 18 23 0.8 305
2 16 25 54 0.8 203
4 32 14 68 0.7 133
8 64 12 65 0.7 100
16 128 10 87 0.6 106
32 256 8 122 0.6 135
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Performance analysis - “Large” instances

Load  Comm. Serial Total
Test Imbal. Cost Bottleneck  Time/Iter.
Problem Nodes Cores (us) (us) (us) (us)
Uci2 1 1 0 0 6.8 24,291
1 8 510 183 6.0 4,785
2 16 554 274 6.0 2,879
4 32 563 327 6.0 1,921
8 64 542 355 6.0 1,418
16 128 523 547 6.0 1,335
32 256 519 668 5.8 1,323
UuC24 1 1 0 0 11.0 28,890
1 3 593 259 9.8 2,983
2 16 543 315 9.7 3,436
4 32 551 386 9.6 2,248
8 64 509 367 9.5 1,536
16 128 538 718 9.5 1,593
32 256 584 1413 9.5 2,170
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Performance analysis

= First-stage calculation bottleneck relatively insignificant
= Load imbalance depends on problem
— Caused by exploiting hyper-sparsity
= Communication cost significant, but small enough to allow for
significant speedups
— Speedups on Fusion unexpected
— High-performance interconnects (Infiniband)
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Back to what we wanted to solve - Preliminary
results

= First-stage variables in UC12 are binary on/off generator states
= With 64 scenarios (3,621,180 vars., 3,744,468 cons., 3,132 binary)
— LP Relaxation: 939,208
— LP Relaxation + CglProbing cuts: 939,626
— Feasible solution from rounding: 942,237
— Optimality Gap: 0.27% (0.5% is acceptable in practice)
— Starting with optimal LP basis:

e 1 hour with PIPS-S on 4 nodes (64 cores) of Fusion
e 4.75 hours with Clp in serial

= Further decrease in gap by better primal heuristics and more cut
generators

= UC12 can be “solved” at the root node!

— Reported in literature for similar deterministic model
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Conclusions

= Simplex method is parallelizable for dual block-angular LPs

= Significant speedups over highly-efficient serial solvers possible
on a high-performance cluster on appropriately sized problems

= Sequences of large-scale block-angular LPs can now be solved
efficiently in parallel

= Path forward for block-angular MILPs

— Solve stochastic unit commitment problem at root node?
— Parallel simplex inside parallel branch and bound?
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Conclusions

= Communication intensive optimization algorithms can
successfully scale on today’s high-performance clusters

— Each simplex iteration has ~10 collective (broadcast/all-to-all)
communication operations.

— Observed 100s of iterations per second.
— Communication cost is order of 10s/100s of microseconds

e Used to be order of milliseconds
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Thank you!
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