JuMP: Nonlinear Modeling with Exact Hessians in Julia

Miles Lubin, Iain Dunning, and Joey Huchette

MIT Operations Research Center

INFORMS 2014 - November 9, 2014

- Challenges traditional performance trade-offs: high-level, dynamic, and fast
- Familiar syntax for Python and MATLAB users
- Technical advances that can change how we compute in the field of Operations Research (Lubin and Dunning, forthcoming in IJOC)

- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
 - cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
 - cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...
- Version 0.1 released in October 2013 (LP, QP, MILP)
- Version 0.2 released in December 2013 (Advanced MILP)

 † Iain Dunning's talk tomorrow
- Version 0.5 released in May 2014 (NLP)

Nonlinear modeling

$$\min f(x)$$

s.t. $g(x) \le 0$

- ullet User inputs closed-form expressions for f and g
- Modeling language communicates with solver to provide derivatives
 - Traditionally, Hessian of Lagrangian:

$$\nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g(x)$$

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses as1 library to read and query derivatives

 Gay, D. 1997. Hooking your solver to AMPL. Technical report 97-4-06. Bell Laboratories.

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses as1 library to read and query derivatives

 Gay, D. 1997. Hooking your solver to AMPL. Technical report 97-4-06. Bell Laboratories.

Can we do better?

- Improve performance by avoiding writing to disk
- Flexibility of lightweight, pure-Julia implementation

Methods for computing derivatives

- Symbolic
 - Does not scale well to second-order derivatives
- Automatic Differentiation (AD)
 - Reverse mode
 - Forward mode

Reverse mode AD in 2 slides

Assume function f is given in the form,

```
function f(x_1, x_2, ..., x_n)

for i = n + 1, n + 2, ..., N do

x_i \leftarrow g_i(x_{S_i})

end for

return x_N

end function
```

- S_i input to *i*th operation, subset of $\{1,2,\ldots,i-1\}$, $(|S_i|\leq 2)$
- g_i "basic" operation: +, *, sqrt, sin, exp, log, ...

Then

$$\frac{\partial f(x)}{\partial x_i} = \frac{\partial x_N}{\partial x_i} = \sum_{j:i \in S_i} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i}$$

Note $i \in S_j$ implies j > i, which means that we can **compute all partials** by running the function in reverse:

$$\begin{array}{l} \frac{\partial x_N}{\partial x_N} \leftarrow 1 \\ \textbf{for } i = N-1, N-2, \ldots, 2, 1 \ \textbf{do} \\ \textbf{if } i > n \ \textbf{then} \\ \textbf{for } k \in S_i \ \textbf{do} \\ \textbf{Compute and store } \frac{\partial g_i(x_{S_i})}{\partial x_k} \\ \textbf{end for} \\ \textbf{end if} \\ \frac{\partial x_N}{\partial x_i} \leftarrow \sum_{j: i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i} \\ \textbf{end for} \end{array}$$

At the end we obtain

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

Discussion

• Can all functions be represented in the procedural form?

• What's the computational cost to compute a gradient?

Discussion

- Can all functions be represented in the procedural form?
 - Trivial for closed-form algebraic expressions (good for JuMP)
 - Yes in general, but sequence of operations may change over domain
- What's the computational cost to compute a gradient?

Discussion

- Can all functions be represented in the procedural form?
 - Trivial for closed-form algebraic expressions (good for JuMP)
 - Yes in general, but sequence of operations may change over domain
- What's the computational cost to compute a gradient?
 - O(1) function evaluations! (c.f. O(n) for finite differences)
 - O(#operations) storage

Example

$$f(x_1,x_2)=\sin(x_1)\exp(x_2)$$
 function $f(x_1,x_2)$
 $x_3\leftarrow\sin(x_1)$
 $x_4\leftarrow\exp(x_2)$
 $x_5\leftarrow x_3*x_4$
return x_5
end function

$$\begin{array}{c} \textbf{function} \ \nabla f(x_1,x_2) \\ x_3 \leftarrow \sin(x_1) \\ x_4 \leftarrow \exp(x_2) \\ x_5 \leftarrow x_3 * x_4 \\ z_5 \leftarrow 1 \\ z_4 \leftarrow x_3 \\ z_3 \leftarrow x_4 \\ z_2 \leftarrow z_4 \exp(x_2) \\ z_1 \leftarrow z_3 \cos(x_1) \\ \textbf{return} \ (z_1,z_2) \\ \textbf{end function} \\ z_i := \frac{\partial x_5}{\partial x_i} \end{array}$$

One can view reverse-mode AD as a method for *transforming code* to compute a function $f: \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$.

• Usually implemented by interpreting each instruction

One can view reverse-mode AD as a method for *transforming code* to compute a function $f: \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)

One can view reverse-mode AD as a method for *transforming code* to compute a function $f: \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)
- In Julia, easy to manipulate and compile expressions at runtime, so this is what we do!
 - 500 lines of code, transparent to the user

Forward-mode AD

•
$$f(x + y\epsilon) = f(x) + yf'(x)\epsilon$$

• Idea: extend all operations to carry first-order taylor expansion terms

• Does this require access to the "procedural form"?

• What's the computational cost?

- Does this require access to the "procedural form"?
 - No, implement via operator overloading*
 - Write generic (templated) code in Julia
- What's the computational cost?

Wait, isn't operator overloading slow?

```
*(z::Dual, w::Dual) = dual(real(z)*real(w),
      epsilon(z)*real(w)+real(z)*epsilon(w))
julia> code_native(*,(Dual{Float64},Dual{Float64}))
       push
               RBP
       mov RBP, RSP
       vmulsd XMM3, XMM0, XMM3
       vmulsd XMM1, XMM1, XMM2
       vaddsd XMM1, XMM1, XMM3
       vmulsd XMMO, XMMO, XMM2
               RBP
       pop
       ret
```

• Efficient code for *immutable* types

- Does this require access to the "procedural form"?
 - No, implement via operator overloading
 - Write generic (templated) code in Julia
- What's the computational cost?

- Does this require access to the "procedural form"?
 - No, implement via operator overloading
 - Write generic (templated) code in Julia
- What's the computational cost?
 - Directional derivatives in O(1) evaluations, like finite differencing
 - So O(n) evaluations for Jacobian of $f: \mathbb{R}^n \to \mathbb{R}^k$
 - Doesn't scale like reverse-mode for gradients, but...

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

The Jacobian of $\nabla f(x)$ is $\nabla^2 f(x)$. So compute full Hessian matrix in O(n) evaluations of f.

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

The Jacobian of $\nabla f(x)$ is $\nabla^2 f(x)$. So compute full Hessian matrix in O(n) evaluations of f.

Alternatively: Hessian-vector product $\nabla^2 f(x)d$ is directional derivative of $\nabla f(x)$, can compute in O(1) evaluations of f.

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d=(1,\cdots,1)$ to "recover" all nonzero entries of $\nabla^2 f(x)$.

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d=(1,\cdots,1)$ to "recover" all nonzero entries of $\nabla^2 f(x)$.

In general, what is the smallest number of Hessian-vector products needed to recover all nonzero elements of $\nabla^2 f(x)$?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
- We implement the coloring heuristic of Gebremedhin et al (2009).

Benchmarks

Model generation time: Time between user pressing enter and solver starting

Function evaluation time: Time evaluating derivatives

```
Total CPU secs in IPOPT (w/o function evaluations) = 224.725
Total CPU secs in NLP function evaluations = 29.510
```

Performance goal: Don't be the bottleneck!

clnlbeam model

```
alpha = 350
h = 1/N
m = Model()
QdefVar(m, -1 \le t[1:(N+1)] \le 1)
QdefVar(m, -0.05 \le x[1:(N+1)] \le 0.05)
@defVar(m, u[1:(N+1)])
QsetNLObjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) +
                             0.5*alpha*h*(cos(t[i+1]) +
                               cos(t[i])), i=1:N)
@addNLConstraint(m, cons1[i=1:N],
    x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)
@addConstraint(m, cons2[i=1:N],
    t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0
```

Table: Model generation time (sec.)

N =	JuMP	AMPL	Pyomo	YALMIP
5,000	0.6	0.2	4.8	116.6
50,000	1.9	2.8	44.2	OOM
500,000	17.2	211.6	636.1	OOM

OOM = Exceeded 64GB of RAM!

Model has 3N variables and 2N constraints. Diagonal Hessian.

Pyomo writes .nl files. YALMIP pure MATLAB.

For N = 500,000, .nl file is 180MB.

Table: Hessian evaluation time (sec.)

N =	JuMP	asl
5,000	0.004	0.002
50,000	0.055	0.042
500,000	0.573	0.438

as1: AMPL & Pyomo. YALMIP does not provide Hessians.

Connecting to solvers

JuMP uses solver-independent **MathProgBase** interface for connecting to solvers.

For LP/MILP: CPLEX, Clp, Cbc, ECOS, GLPK, Gurobi, Mosek

For NLP: Ipopt, KNITRO, Mosek, NLopt

All interfaces *in-memory*. **Order of magnitude easier** to interface with C and Fortran from Julia compared with Python and MATLAB.

Availability

http://github.com/JuliaOpt/JuMP.jl

- Available via Julia package manager
- Easy installation of open-source solvers on all platforms¹
- LGPL license

¹Thanks to many contributors

Who's using JuMP?

✓ powered by red dwarf

- 4,000 monthly hits to GitHub page (50% from outside of USA)
- "Integer Programming" and "Optimization Methods" courses at MIT
- ...

Thank you!

References

- M. Lubin and I. Dunning, "Computing in Operations Research using Julia", INFORMS Journal on Computing, forthcoming.
 - Early paper, does not include description of automatic differentiation
- A. H. Gebremedhin et al., "Efficient computation of sparse hessians using coloring and automatic differentiation", INFORMS Journal on Computing, 2009.
 - Graph coloring algorithm used by JuMP
- Blog post by Justin Domke
 - Simple explanation of reverse-mode AD
- ReverseDiffSparse.jl and DualNumbers.jl
 - Modular implementations of reverse mode and forward mode AD used by JuMP