
JuMP: Nonlinear Modeling with Exact Hessians in Julia

Miles Lubin, Iain Dunning, and Joey Huchette

MIT Operations Research Center

INFORMS 2014 – November 9, 2014

1 / 38

Challenges traditional performance trade-offs: high-level, dynamic,
and fast

Familiar syntax for Python and MATLAB users

Technical advances that can change how we compute in the field of
Operations Research (Lubin and Dunning, forthcoming in IJOC)

2 / 38

Solver-independent, fast, extensible, open-source algebraic modeling
language for Mathematical Programming embedded in Julia

cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

Version 0.1 released in October 2013 (LP, QP, MILP)

Version 0.2 released in December 2013 (Advanced MILP)

↑ Iain Dunning’s talk tomorrow

Version 0.5 released in May 2014 (NLP)

3 / 38

Solver-independent, fast, extensible, open-source algebraic modeling
language for Mathematical Programming embedded in Julia

cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

Version 0.1 released in October 2013 (LP, QP, MILP)

Version 0.2 released in December 2013 (Advanced MILP)

↑ Iain Dunning’s talk tomorrow

Version 0.5 released in May 2014 (NLP)

4 / 38

Nonlinear modeling

min f (x)

s.t. g(x) ≤ 0

User inputs closed-form expressions for f and g

Modeling language communicates with solver to provide derivatives

Traditionally, Hessian of Lagrangian:

∇2f (x) +
∑
i

λi∇2g(x)

5 / 38

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library
to read and query derivatives

Gay, D. 1997. Hooking your solver to AMPL. Technical report
97-4-06. Bell Laboratories.

Can we do better?

Improve performance by avoiding writing to disk

Flexibility of lightweight, pure-Julia implementation

6 / 38

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library
to read and query derivatives

Gay, D. 1997. Hooking your solver to AMPL. Technical report
97-4-06. Bell Laboratories.

Can we do better?

Improve performance by avoiding writing to disk

Flexibility of lightweight, pure-Julia implementation

7 / 38

Methods for computing derivatives

Symbolic

Does not scale well to second-order derivatives

Automatic Differentiation (AD)

Reverse mode
Forward mode

8 / 38

Reverse mode AD in 2 slides

Assume function f is given in the form,

function f (x1, x2, . . . , xn)
for i = n + 1, n + 2, . . . ,N do

xi ← gi (xSi)
end for
return xN

end function

Si – input to ith operation, subset of {1, 2, . . . , i − 1}, (|Si | ≤ 2)

gi – “basic” operation: +, ∗, sqrt, sin, exp, log, . . .

Then
∂f (x)

∂xi
=
∂xN
∂xi

=
∑
j :i∈Sj

∂xN
∂xj

∂gj(xSj)

∂xi

9 / 38

Note i ∈ Sj implies j > i , which means that we can compute all partials
by running the function in reverse:

∂xN
∂xN
← 1

for i = N − 1,N − 2, . . . , 2, 1 do
if i > n then

for k ∈ Si do

Compute and store
∂gi (xSi)

∂xk
end for

end if
∂xN
∂xi
←
∑

j :i∈Sj
∂xN
∂xj

∂gj (xSj)

∂xi
end for

At the end we obtain

∇f (x) =

(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)

10 / 38

Discussion

Can all functions be represented in the procedural form?

Trivial for closed-form algebraic expressions (good for JuMP)
Yes in general, but sequence of operations may change over domain

What’s the computational cost to compute a gradient?

O(1) function evaluations! (c.f. O(n) for finite differences)
O(#operations) storage

11 / 38

Discussion

Can all functions be represented in the procedural form?

Trivial for closed-form algebraic expressions (good for JuMP)
Yes in general, but sequence of operations may change over domain

What’s the computational cost to compute a gradient?

O(1) function evaluations! (c.f. O(n) for finite differences)
O(#operations) storage

12 / 38

Discussion

Can all functions be represented in the procedural form?

Trivial for closed-form algebraic expressions (good for JuMP)
Yes in general, but sequence of operations may change over domain

What’s the computational cost to compute a gradient?

O(1) function evaluations! (c.f. O(n) for finite differences)
O(#operations) storage

13 / 38

Example

f (x1, x2) = sin(x1) exp(x2)

function f (x1, x2)
x3 ← sin(x1)
x4 ← exp(x2)
x5 ← x3 ∗ x4
return x5

end function

14 / 38

function ∇f (x1, x2)
x3 ← sin(x1)
x4 ← exp(x2)
x5 ← x3 ∗ x4
z5 ← 1
z4 ← x3
z3 ← x4
z2 ← z4 exp(x2)
z1 ← z3 cos(x1)
return (z1, z2)

end function

zi := ∂x5
∂xi

15 / 38

One can view reverse-mode AD as a method for transforming code to
compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

Usually implemented by interpreting each instruction

Why not just generate new code and compile it instead?

Let compiler optimize, essentially as fast as hand-written derivatives
Not a new idea, but historically hard to implement and difficult to use
(e.g., AMPL’s nlc)

In Julia, easy to manipulate and compile expressions at runtime,
so this is what we do!

500 lines of code, transparent to the user

16 / 38

One can view reverse-mode AD as a method for transforming code to
compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

Usually implemented by interpreting each instruction

Why not just generate new code and compile it instead?

Let compiler optimize, essentially as fast as hand-written derivatives
Not a new idea, but historically hard to implement and difficult to use
(e.g., AMPL’s nlc)

In Julia, easy to manipulate and compile expressions at runtime,
so this is what we do!

500 lines of code, transparent to the user

17 / 38

One can view reverse-mode AD as a method for transforming code to
compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

Usually implemented by interpreting each instruction

Why not just generate new code and compile it instead?

Let compiler optimize, essentially as fast as hand-written derivatives
Not a new idea, but historically hard to implement and difficult to use
(e.g., AMPL’s nlc)

In Julia, easy to manipulate and compile expressions at runtime,
so this is what we do!

500 lines of code, transparent to the user

18 / 38

Forward-mode AD

f (x + yε) = f (x) + yf ′(x)ε

Idea: extend all operations to carry first-order taylor expansion terms

19 / 38

Does this require access to the “procedural form”?

No, implement via operator overloading*
Write generic (templated) code in Julia

What’s the computational cost?

20 / 38

Does this require access to the “procedural form”?

No, implement via operator overloading*
Write generic (templated) code in Julia

What’s the computational cost?

21 / 38

Wait, isn’t operator overloading slow?

*(z::Dual, w::Dual) = dual(real(z)*real(w),

epsilon(z)*real(w)+real(z)*epsilon(w))

julia> code_native(*,(Dual{Float64},Dual{Float64}))

push RBP

mov RBP, RSP

vmulsd XMM3, XMM0, XMM3

vmulsd XMM1, XMM1, XMM2

vaddsd XMM1, XMM1, XMM3

vmulsd XMM0, XMM0, XMM2

pop RBP

ret

Efficient code for immutable types

22 / 38

Does this require access to the “procedural form”?

No, implement via operator overloading
Write generic (templated) code in Julia

What’s the computational cost?

Directional derivatives in O(1) evaluations, like finite differencing
So O(n) evaluations for Jacobian of f : Rn → Rk

Doesn’t scale like reverse-mode for gradients, but...

23 / 38

Does this require access to the “procedural form”?

No, implement via operator overloading
Write generic (templated) code in Julia

What’s the computational cost?

Directional derivatives in O(1) evaluations, like finite differencing
So O(n) evaluations for Jacobian of f : Rn → Rk

Doesn’t scale like reverse-mode for gradients, but...

24 / 38

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the n × n Hessian matrix:

∇2f (x)ij =
∂2f

∂xi∂xj
.

The Jacobian of ∇f (x) is ∇2f (x). So compute full Hessian matrix in
O(n) evaluations of f .

Alternatively: Hessian-vector product ∇2f (x)d is directional derivative of
∇f (x), can compute in O(1) evaluations of f .

25 / 38

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the n × n Hessian matrix:

∇2f (x)ij =
∂2f

∂xi∂xj
.

The Jacobian of ∇f (x) is ∇2f (x). So compute full Hessian matrix in
O(n) evaluations of f .

Alternatively: Hessian-vector product ∇2f (x)d is directional derivative of
∇f (x), can compute in O(1) evaluations of f .

26 / 38

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate ∇2f (x)d with vector d = (1, · · · , 1) to
“recover” all nonzero entries of ∇2f (x).

In general, what is the smallest number of Hessian-vector products needed
to recover all nonzero elements of ∇2f (x)?

Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)

We implement the coloring heuristic of Gebremedhin et al (2009).

27 / 38

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate ∇2f (x)d with vector d = (1, · · · , 1) to
“recover” all nonzero entries of ∇2f (x).

In general, what is the smallest number of Hessian-vector products needed
to recover all nonzero elements of ∇2f (x)?

Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)

We implement the coloring heuristic of Gebremedhin et al (2009).

28 / 38

Benchmarks

Model generation time: Time between user pressing enter and solver
starting

Function evaluation time: Time evaluating derivatives

Total CPU secs in IPOPT (w/o function evaluations) = 224.725

Total CPU secs in NLP function evaluations = 29.510

Performance goal: Don’t be the bottleneck!

29 / 38

clnlbeam model

alpha = 350

h = 1/N

m = Model()

@defVar(m, -1 <= t[1:(N+1)] <= 1)

@defVar(m, -0.05 <= x[1:(N+1)] <= 0.05)

@defVar(m, u[1:(N+1)])

@setNLObjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) +

0.5*alpha*h*(cos(t[i+1]) +

cos(t[i])), i=1:N})

@addNLConstraint(m, cons1[i=1:N],

x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)

@addConstraint(m, cons2[i=1:N],

t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0)

30 / 38

Table: Model generation time (sec.)

N = JuMP AMPL Pyomo YALMIP

5,000 0.6 0.2 4.8 116.6
50,000 1.9 2.8 44.2 OOM
500,000 17.2 211.6 636.1 OOM

OOM = Exceeded 64GB of RAM!
Model has 3N variables and 2N constraints. Diagonal Hessian.
Pyomo writes .nl files. YALMIP pure MATLAB.
For N = 500, 000, .nl file is 180MB.

31 / 38

Table: Hessian evaluation time (sec.)

N = JuMP asl

5,000 0.004 0.002
50,000 0.055 0.042
500,000 0.573 0.438

asl: AMPL & Pyomo. YALMIP does not provide Hessians.

32 / 38

Connecting to solvers

JuMP uses solver-independent MathProgBase interface for connecting to
solvers.

For LP/MILP: CPLEX, Clp, Cbc, ECOS, GLPK, Gurobi, Mosek

For NLP: Ipopt, KNITRO, Mosek, NLopt

All interfaces in-memory. Order of magnitude easier to interface with C
and Fortran from Julia compared with Python and MATLAB.

33 / 38

Solvers Modeling

IPOPT

MOSEK

JuMP

MathProgBase

KNITRO

...

AMPL

User

...

34 / 38

Availability

http://github.com/JuliaOpt/JuMP.jl

Available via Julia package manager

Easy installation of open-source solvers on all platforms1

LGPL license

1Thanks to many contributors
35 / 38

http://github.com/JuliaOpt/JuMP.jl

Who’s using JuMP?

4,000 monthly hits to GitHub page (50% from outside of USA)

“Integer Programming” and “Optimization Methods” courses at MIT

...
36 / 38

Thank you!

37 / 38

References

M. Lubin and I. Dunning, “Computing in Operations Research using
Julia”, INFORMS Journal on Computing, forthcoming.

Early paper, does not include description of automatic differentiation

A. H. Gebremedhin et al., “Efficient computation of sparse hessians
using coloring and automatic differentiation”, INFORMS Journal on
Computing, 2009.

Graph coloring algorithm used by JuMP

Blog post by Justin Domke

Simple explanation of reverse-mode AD

ReverseDiffSparse.jl and DualNumbers.jl

Modular implementations of reverse mode and forward mode AD used
by JuMP

38 / 38

http://justindomke.wordpress.com/2009/03/24/a-simple-explanation-of-reverse-mode-automatic-differentiation/

