JuMP: Nonlinear Modeling with Exact Hessians in Julia

Miles Lubin, lain Dunning, and Joey Huchette
MIT Operations Research Center

INFORMS 2014 — November 9, 2014

@ Challenges traditional performance trade-offs: high-level, dynamic,
and fast

@ Familiar syntax for Python and MATLAB users

@ Technical advances that can change how we compute in the field of
Operations Research (Lubin and Dunning, forthcoming in 1JOC)

38

“‘JUMP

@ Solver-independent, fast, extensible, open-source algebraic modeling
language for Mathematical Programming embedded in Julia

o cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

38

‘Q‘JUMP

@ Solver-independent, fast, extensible, open-source algebraic modeling
language for Mathematical Programming embedded in Julia

o cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

@ Version 0.1 released in October 2013 (LP, QP, MILP)
@ Version 0.2 released in December 2013 (Advanced MILP)

1 lain Dunning's talk tomorrow

@ Version 0.5 released in May 2014 (NLP)

38

Nonlinear modeling

min f(x)
s.t. g(x) <0

@ User inputs closed-form expressions for f and g
@ Modeling language communicates with solver to provide derivatives
o Traditionally, Hessian of Lagrangian:

V2f(x) + Z AiV2g(x)

1

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library
to read and query derivatives

e Gay, D. 1997. Hooking your solver to AMPL. Technical report
97-4-06. Bell Laboratories.

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library
to read and query derivatives

e Gay, D. 1997. Hooking your solver to AMPL. Technical report
97-4-06. Bell Laboratories.

Can we do better?
@ Improve performance by avoiding writing to disk

o Flexibility of lightweight, pure-Julia implementation

Methods for computing derivatives

@ Symbolic
o Does not scale well to second-order derivatives
o Automatic Differentiation (AD)

o Reverse mode
o Forward mode

Reverse mode AD in 2 slides

Assume function f is given in the form,

function f(xy,x2,...,x,)
fori=n+1,n+2,....,Ndo
xj ¢ gi(xs;)
end for
return xy

end function
e S; —input to ith operation, subset of {1,2,...,i — 1}, (|Si] < 2)
@ g; — "basic” operation: 4+, *,sqrt, sin, exp, log, . ..

Then

Of (x) 8XN Z Ixn 0gj(XS
8X, 8X[. a){[8XI

Note / € S; implies j > i, which means that we can compute all partials

by running the function in reverse:

|
6XN
fori=N—-1N-2,...,21do
if i>n then
for k€ S; do
Compute and store Bgé(;;si)
end for
end if
Oxn > oxy 281055
Ox; inESj GXJ Ox;
end for

At the end we obtain

of of of
Vf(X) - (aXl’aXQ’ 78Xn>

10/38

Discussion

@ Can all functions be represented in the procedural form?

@ What's the computational cost to compute a gradient?

11/38

Discussion

@ Can all functions be represented in the procedural form?

e Trivial for closed-form algebraic expressions (good for JuMP)
e Yes in general, but sequence of operations may change over domain

@ What's the computational cost to compute a gradient?

12/38

Discussion

@ Can all functions be represented in the procedural form?

e Trivial for closed-form algebraic expressions (good for JuMP)
e Yes in general, but sequence of operations may change over domain

@ What's the computational cost to compute a gradient?

e O(1) function evaluations! (c.f. O(n) for finite differences)
o O(#operations) storage

13/38

f(x1,x2) = sin(x1) exp(x2)

function f(x1, x2)
x3 < sin(x)
x4 < exp(x2)
X5 <— X3 * X3
return xs

end function

14/38

function Vf(xi, x2)
X3 < sin(xl)
x4 < exp(x2)
X5 < X3 * Xq
Z5 < 1
Zy < X3
73 < X4
2y zzexp(x2)
71 < z3cos(xy)
return (z1,)
end function

. Oxs
Z, T BX,‘

15/38

One can view reverse-mode AD as a method for transforming code to
compute a function f : R” — R into code to compute the gradient
function Vf : R" — R".

@ Usually implemented by interpreting each instruction

16 /38

One can view reverse-mode AD as a method for transforming code to
compute a function f : R” — R into code to compute the gradient
function Vf : R" — R".

@ Usually implemented by interpreting each instruction
@ Why not just generate new code and compile it instead?

o Let compiler optimize, essentially as fast as hand-written derivatives
o Not a new idea, but historically hard to implement and difficult to use
(e.g., AMPL's nlc)

17 /38

One can view reverse-mode AD as a method for transforming code to
compute a function f : R” — R into code to compute the gradient
function Vf : R" — R".

@ Usually implemented by interpreting each instruction
@ Why not just generate new code and compile it instead?

o Let compiler optimize, essentially as fast as hand-written derivatives
o Not a new idea, but historically hard to implement and difficult to use
(e.g., AMPL's nlc)

@ In Julia, easy to manipulate and compile expressions at runtime,
so this is what we do!

e 500 lines of code, transparent to the user

18 /38

Forward-mode AD

o f(x+ye) = f(x)+ yf'(x)e
o ldea: extend all operations to carry first-order taylor expansion terms

19/38

@ Does this require access to the “procedural form”?

@ What's the computational cost?

20 /38

@ Does this require access to the “procedural form”?

o No, implement via operator overloading*
o Write generic (templated) code in Julia

@ What's the computational cost?

21/38

Wait, isn't operator overloading slow?

*x(z::Dual, w::Dual) = dual(real(z)x*real(w),
epsilon(z)*real (w)+real(z)*epsilon(w))
julia> code_native(*, (Dual{Float64},Dual{Float64}))

push
mov
vmulsd
vmulsd
vaddsd
vmulsd
pop
ret

RBP
RBP, RSP

XMM3, XMMO, XMM3
XMM1, XMM1, XMM2
XMM1, XMM1, XMM3
XMMO, XMMO, XMM2
RBP

o Efficient code for immutable types

@ Does this require access to the “procedural form”?

o No, implement via operator overloading
o Write generic (templated) code in Julia

@ What's the computational cost?

23 /38

@ Does this require access to the “procedural form”?
o No, implement via operator overloading
o Write generic (templated) code in Julia

@ What's the computational cost?

o Directional derivatives in O(1) evaluations, like finite differencing
o So O(n) evaluations for Jacobian of f : R" — R¥
o Doesn't scale like reverse-mode for gradients, but...

24 /38

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the n x n Hessian matrix:
0?f
V2f(x)j = :
(X)U 8X,'8Xj

The Jacobian of Vf(x) is V2f(x). So compute full Hessian matrix in
O(n) evaluations of f.

25/38

Computing Hessians

Efficient interior-point solvers (Ipopt, ...) need the n x n Hessian matrix:

0*f
2 I
Vef(x) = 0

The Jacobian of Vf(x) is V2f(x). So compute full Hessian matrix in
O(n) evaluations of f.

Alternatively: Hessian-vector product V2f(x)d is directional derivative of
Vf(x), can compute in O(1) evaluations of f.

26 /38

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate V2f(x)d with vector d = (1,---,1) to
“recover” all nonzero entries of V2f(x).

27/38

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate V2f(x)d with vector d = (1,---,1) to
“recover” all nonzero entries of V2f(x).

In general, what is the smallest number of Hessian-vector products needed
to recover all nonzero elements of V2f(x)?

@ Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
@ We implement the coloring heuristic of Gebremedhin et al (2009).

28 /38

Model generation time: Time between user pressing enter and solver

starting

Function evaluation time: Time evaluating derivatives

224.725
29.510

Total CPU secs in IPOPT (w/o function evaluations)
Total CPU secs in NLP function evaluations

Performance goal: Don’t be the bottleneck!

29 /38

clnlbeam mode

alpha = 350
h = 1/N
m = Model()

@defVar(m, -1 <= t[1: (N+1)] <= 1)
@defVar(m, -0.05 <= x[1:(N+1)] <= 0.05)
@defVar(m, ull:(N+1)])

@setNLObjective(m, Min, sum{ 0.5%h*(ul[i+1]"2+ul[i]~2) +
0.5*alpha*h*(cos(t[i+1]) +
cos(t[i])), i=1:N})

©@addNLConstraint (m, cons1[i=1:N],

x[i+1] - x[i] - 0.5xh*(sin(t[i+1])+sin(t[i])) == 0)
@addConstraint(m, cons2[i=1:N],

t[i+1] - t[i] - (0.5h)*ul[i+1] - (0.5h)*u[i] == 0)

30/38

Table: Model generation time (sec.)

N = JuMP AMPL Pyomo YALMIP
5,000 0.6 0.2 4.8 116.6
50,000 19 2.8 442 OOM

500,000 17.2 2116 636.1 OOM

OOM = Exceeded 64GB of RAM!

Model has 3N variables and 2/ constraints. Diagonal Hessian.
Pyomo writes .nl files. YALMIP pure MATLAB.

For N = 500, 000, .nl file is 180MB.

31/38

Table: Hessian evaluation time (sec.)

N = JuMP asl

5,000 0.004 0.002
50,000 0.055 0.042
500,000 0.573 0.438

asl: AMPL & Pyomo. YALMIP does not provide Hessians.

32/38

Connecting to solvers

JuMP uses solver-independent MathProgBase interface for connecting to
solvers.

For LP/MILP: CPLEX, Clp, Cbc, ECOS, GLPK, Gurobi, Mosek
For NLP: Ipopt, KNITRO, Mosek, NLopt

All interfaces in-memory. Order of magnitude easier to interface with C
and Fortran from Julia compared with Python and MATLAB.

33/38

Solvers Modeling
IPOPT JuMP
MOSEK AMPL
MathProgBase
KNITRO User

34 /38

Availability

http://github.com/Julialpt/JuMP. jl

@ Available via Julia package manager
e Easy installation of open-source solvers on all platforms®
o LGPL license

Thanks to many contributors
35/38

http://github.com/JuliaOpt/JuMP.jl

Who's using JuMP?

g]ullaOpt/]uMPJI 100 stars

Gcean

cccccc

Indian
Geean

¥ powered by red dwarf

Map | Satellite

Gcean

Tems of Use | Reporta map emor

@ 4,000 monthly hits to GitHub page (50% from outside of USA)
@ ‘Integer Programming” and “Optimization Methods" courses at MIT

36 /38

37/38

References

@ M. Lubin and I. Dunning, “Computing in Operations Research using
Julia”, INFORMS Journal on Computing, forthcoming.

o Early paper, does not include description of automatic differentiation

@ A. H. Gebremedhin et al., “Efficient computation of sparse hessians
using coloring and automatic differentiation”, INFORMS Journal on
Computing, 20009.

e Graph coloring algorithm used by JuMP

Blog post by Justin Domke
e Simple explanation of reverse-mode AD

ReverseDiffSparse.jl and DualNumbers.jl

e Modular implementations of reverse mode and forward mode AD used
by JuMP

38/38

http://justindomke.wordpress.com/2009/03/24/a-simple-explanation-of-reverse-mode-automatic-differentiation/

