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Why did we choose Julia?

● “I want to model and solve a large LP/MIP 
within a programming language, but Python is 
too slow and C++ is too low level”

● “I want to implement optimization algorithms in 
a fast, high-level language designed for 
numerical computing” 

● “I want to create an end-user-friendly interface 
for optimization without writing MEX files”

Lubin and Dunning, “Computing in Operations Research using Julia”, IJOC, 2015



And so… 

We (and many other contributors) developed a 
new set of tools to help us do our work in Julia.



CoinOptServices.jl

AmplNLReader.jl

JuliaOpt

AmplNLWriter.jl



Modeling languages in Julia

● JuMP
○ Linear, mixed-integer, conic, and nonlinear 

optimization
○ Like AMPL, GAMS, Pyomo

● Convex.jl (Udell, Thursday at 10:20am)

○ Disciplined convex programming
○ Like CVX, cvxpy

● Both use the same solver infrastructure



MathProgBase

● A standard interface which solver wrappers 
implement
○ Like COIN-OR/OSI





MathProgBase philosophy

● In a small package which wraps the solver’s 
C API, implement a few additional methods 
to provide a standardized interface to the 
solver.
○ Clp.jl, Cbc.jl, Gurobi.jl, ECOS.jl, etc...



MathProgBase philosophy

● Make it easy to access low-level features.
○ Don’t get in the user’s way



MathProgBase philosophy

● If the solver’s interface doesn’t quite match 
the abstraction, either:
○ perform some transformations within the solver 

wrapper, or
○ if the above is too hard, update the abstraction



Diverse classes of solvers

● LP++
● Conic
● Nonlinear



LP++

● Plus integer variables, quadratic objective, 
quadratic constraints, SOCP

● LP hotstarts, branch & bound callbacks 
● CPLEX, Gurobi, Cbc/Clp, GLPK, Mosek



Conic

● Linear, SOC, SDP, exponential, power 
cones

● Mosek, ECOS, SCS



Nonlinear

● Gradient, Jacobian, Hessian oracles, 
expression graphs

● Ipopt, Mosek, KNITRO, NLopt



How it looks for users:
using JuMP, Clp

m = Model(solver=ClpSolver())

@defVar(m, x[1:2] >= 0)

@setObjective(m, Max, sum(x))

@addConstraint(m, 

     x[1]+2*x[2] <= 1)

status = solve(m)

using Convex, Clp

x = Variable(2)

problem = maximize(sum(x),

 [x >= 0, x[1]+2*x[2] <= 1])

solve!(problem, ClpSolver())

using MathProgBase, Clp

sol = linprog([-1.0, -1.0], [1.0 2.0], ‘<’, 1.0, ClpSolver())



Wait, how do I set solver options?

ClpSolver(PrimalTolerance=1e-5)

GurobiSolver(Method=2,Crossover=0)

CplexSolver(CPX_PARAM_TILIM=100)

MosekSolver(LOG=0)

● We don’t abstract over parameters



Wait, how do I do this thing which I 
can only do from the solver API?
# With JuMP model object m

grb = MathProgBase.getrawsolver(getInternalModel(m))

Gurobi.computeIIS(grb)

iisconstr = Gurobi.get_intarray(grb, “IISConstr”, 1, n_constr)

Example to compute IIS (Irreducible Inconsistent 
Subsystem) with Gurobi

https://github.com/JuliaOpt/JuMP.jl/blob/ac78ec11a3e4f412f7c7662def84b231f74dcd5a/examples/iis.jl


Branch & bound callbacks!

m = Model(solver=GurobiSolver())

function lazyCallback(cb)

    … # e.g., TSP subtour elimination

end

addLazyCallback(m, lazyCallback)

solve(m)



Branch & bound callbacks!

● Lazy constraints, user cuts, user heuristics
● Currently supported by Gurobi, CPLEX, and 

GLPK



Conic interface

● Input format is sparse matrix A and list of 
cones (inspired by CBLIB format)

● We have an LP++ ←→ Conic translation 
layer



Nonlinear

● JuMP implements automatic sparse Hessian 
computations (preprint)

http://www.optimization-online.org/DB_FILE/2015/04/4891.pdf


Nonlinear

● If you write a solver in Julia accepting 
MathProgBase input, you can call it from 
both AMPL and JuMP!



Nonlinear

Demo

http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/MathProgBase%20Newton%20solver.ipynb
http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/MathProgBase%20Newton%20solver.ipynb


Expression graphs

● Nonlinear interface also allows access to 
expression graphs
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Expression graphs

● Nonlinear interface also allows access to 
expression graphs

● Allows us to write “solvers” which write 
instances to OSiL and NL file formats
○ CoinOptServices.jl, AmplNLWriter.jl

■ Tony Kelman, Thursday at 10:20am
● DReal.jl – interface to a nonlinear 

satisfiability solver

https://github.com/dreal/DReal.jl


Julia is not an island

● Embeddable C API
● Pyjulia

http://docs.julialang.org/en/release-0.3/manual/embedding/
http://docs.julialang.org/en/release-0.3/manual/embedding/
https://github.com/JuliaLang/pyjulia
https://github.com/JuliaLang/pyjulia


From the Clp mailing list (July 8)
I am in somewhat disbelief that I can't do this:

[xopt,fmin] = linprog(c, Acon, rhsvec) ;

to solve min c' * x  given Acon * x <= rhsvec .

The above is the one line matlab interface to linprog.   
There should be something similar in Python in support of 
CLP using it's primary matrix array interface,  
numpy/ndarrays.



From the Clp mailing list (July 8)
I am in somewhat disbelief that I can't do this:

[xopt,fmin] = linprog(c, Acon, rhsvec) ;

to solve min c' * x  given Acon * x <= rhsvec .

The above is the one line matlab interface to linprog.   
There should be something similar in Python in support of 
CLP using it's primary matrix array interface,  
numpy/ndarrays.

We can do that: pylinprog

https://github.com/mlubin/pylinprog


In conclusion

MathProgBase makes it easier than ever 
before to:
● Write fast, solver-independent code.

○ There is no loss of performance
● Write solvers and hook them into open-

source and commercial modeling languages. 



What’s next

● SCIP
● Constraint programming?



Thanks to

● David Anthoff, Carlo Baldassi, Oscar 
Dowson, Jack Dunn, Jenny Hong, Steven G. 
Johnson, Dahua Lin, Karanveer Mohan, Yee 
Sian Ng, Brendan O’Donoghue, Leonardo 
Taccari, Elliot Saba, João Felipe Santos, 
Abel Siqueira, Ulf Worsøe, David Zeng

● Julia developers


