
Abstract glue for
optimization in Julia

Miles Lubin
with Iain Dunning, Joey Huchette, Tony Kelman,

Dominique Orban, and Madeleine Udell
ISMP – July 13, 2015

Why did we choose Julia?

● “I want to model and solve a large LP/MIP
within a programming language, but Python is
too slow and C++ is too low level”

● “I want to implement optimization algorithms in
a fast, high-level language designed for
numerical computing”

● “I want to create an end-user-friendly interface
for optimization without writing MEX files”

Lubin and Dunning, “Computing in Operations Research using Julia”, IJOC, 2015

And so…

We (and many other contributors) developed a
new set of tools to help us do our work in Julia.

CoinOptServices.jl

AmplNLReader.jl

JuliaOpt

AmplNLWriter.jl

Modeling languages in Julia

● JuMP
○ Linear, mixed-integer, conic, and nonlinear

optimization
○ Like AMPL, GAMS, Pyomo

● Convex.jl (Udell, Thursday at 10:20am)

○ Disciplined convex programming
○ Like CVX, cvxpy

● Both use the same solver infrastructure

MathProgBase

● A standard interface which solver wrappers
implement
○ Like COIN-OR/OSI

MathProgBase philosophy

● In a small package which wraps the solver’s
C API, implement a few additional methods
to provide a standardized interface to the
solver.
○ Clp.jl, Cbc.jl, Gurobi.jl, ECOS.jl, etc...

MathProgBase philosophy

● Make it easy to access low-level features.
○ Don’t get in the user’s way

MathProgBase philosophy

● If the solver’s interface doesn’t quite match
the abstraction, either:
○ perform some transformations within the solver

wrapper, or
○ if the above is too hard, update the abstraction

Diverse classes of solvers

● LP++
● Conic
● Nonlinear

LP++

● Plus integer variables, quadratic objective,
quadratic constraints, SOCP

● LP hotstarts, branch & bound callbacks
● CPLEX, Gurobi, Cbc/Clp, GLPK, Mosek

Conic

● Linear, SOC, SDP, exponential, power
cones

● Mosek, ECOS, SCS

Nonlinear

● Gradient, Jacobian, Hessian oracles,
expression graphs

● Ipopt, Mosek, KNITRO, NLopt

How it looks for users:
using JuMP, Clp

m = Model(solver=ClpSolver())

@defVar(m, x[1:2] >= 0)

@setObjective(m, Max, sum(x))

@addConstraint(m,

 x[1]+2*x[2] <= 1)

status = solve(m)

using Convex, Clp

x = Variable(2)

problem = maximize(sum(x),

 [x >= 0, x[1]+2*x[2] <= 1])

solve!(problem, ClpSolver())

using MathProgBase, Clp

sol = linprog([-1.0, -1.0], [1.0 2.0], ‘<’, 1.0, ClpSolver())

Wait, how do I set solver options?

ClpSolver(PrimalTolerance=1e-5)

GurobiSolver(Method=2,Crossover=0)

CplexSolver(CPX_PARAM_TILIM=100)

MosekSolver(LOG=0)

● We don’t abstract over parameters

Wait, how do I do this thing which I
can only do from the solver API?
With JuMP model object m

grb = MathProgBase.getrawsolver(getInternalModel(m))

Gurobi.computeIIS(grb)

iisconstr = Gurobi.get_intarray(grb, “IISConstr”, 1, n_constr)

Example to compute IIS (Irreducible Inconsistent
Subsystem) with Gurobi

https://github.com/JuliaOpt/JuMP.jl/blob/ac78ec11a3e4f412f7c7662def84b231f74dcd5a/examples/iis.jl

Branch & bound callbacks!

m = Model(solver=GurobiSolver())

function lazyCallback(cb)

 … # e.g., TSP subtour elimination

end

addLazyCallback(m, lazyCallback)

solve(m)

Branch & bound callbacks!

● Lazy constraints, user cuts, user heuristics
● Currently supported by Gurobi, CPLEX, and

GLPK

Conic interface

● Input format is sparse matrix A and list of
cones (inspired by CBLIB format)

● We have an LP++ ←→ Conic translation
layer

Nonlinear

● JuMP implements automatic sparse Hessian
computations (preprint)

http://www.optimization-online.org/DB_FILE/2015/04/4891.pdf

Nonlinear

● If you write a solver in Julia accepting
MathProgBase input, you can call it from
both AMPL and JuMP!

Nonlinear

Demo

http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/MathProgBase%20Newton%20solver.ipynb
http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/MathProgBase%20Newton%20solver.ipynb

Expression graphs

● Nonlinear interface also allows access to
expression graphs

+

(·)² y

x

sin

Expression graphs

● Nonlinear interface also allows access to
expression graphs

● Allows us to write “solvers” which write
instances to OSiL and NL file formats
○ CoinOptServices.jl, AmplNLWriter.jl

■ Tony Kelman, Thursday at 10:20am
● DReal.jl – interface to a nonlinear

satisfiability solver

https://github.com/dreal/DReal.jl

Julia is not an island

● Embeddable C API
● Pyjulia

http://docs.julialang.org/en/release-0.3/manual/embedding/
http://docs.julialang.org/en/release-0.3/manual/embedding/
https://github.com/JuliaLang/pyjulia
https://github.com/JuliaLang/pyjulia

From the Clp mailing list (July 8)
I am in somewhat disbelief that I can't do this:

[xopt,fmin] = linprog(c, Acon, rhsvec) ;

to solve min c' * x given Acon * x <= rhsvec .

The above is the one line matlab interface to linprog.
There should be something similar in Python in support of
CLP using it's primary matrix array interface,
numpy/ndarrays.

From the Clp mailing list (July 8)
I am in somewhat disbelief that I can't do this:

[xopt,fmin] = linprog(c, Acon, rhsvec) ;

to solve min c' * x given Acon * x <= rhsvec .

The above is the one line matlab interface to linprog.
There should be something similar in Python in support of
CLP using it's primary matrix array interface,
numpy/ndarrays.

We can do that: pylinprog

https://github.com/mlubin/pylinprog

In conclusion

MathProgBase makes it easier than ever
before to:
● Write fast, solver-independent code.

○ There is no loss of performance
● Write solvers and hook them into open-

source and commercial modeling languages.

What’s next

● SCIP
● Constraint programming?

Thanks to

● David Anthoff, Carlo Baldassi, Oscar
Dowson, Jack Dunn, Jenny Hong, Steven G.
Johnson, Dahua Lin, Karanveer Mohan, Yee
Sian Ng, Brendan O’Donoghue, Leonardo
Taccari, Elliot Saba, João Felipe Santos,
Abel Siqueira, Ulf Worsøe, David Zeng

● Julia developers

