Polyhedral Approaches for Mixed-integer
Convex Optimization

GERAD

Miles Lubin
February 8, 2019

Google, New York City (This work was conducted at MIT.)

Optimization

Given: Feasible region S and objective functionf:S — R

Find: x € S with lowest possible value of f(x) (global solution)

Optimization

Given: Feasible region S and objective functionf:S — R

Find: x € S with lowest possible value of f(x) (global solution)

How to solve?

- Local search (e.g., gradient descent), genetic algorithms, ...

- Approximate or reformulate (if lucky) as another optimization
problem we know how to solve to a global solution

Which optimization problems can we solve to global optimality?

Which optimization problems can we solve to global optimality?

« Integer programming
« Convex optimization

In this talk, we consider mixed-integer convex optimization, or
mixed-integer convex programming (MICP).

These are convex optimization problems with integrality constraints.

We look for global solutions or at least global bounds.

We apply extended formulations, conic duality, and branch and cut
to get a state-of-the-art open-source MICP solver.

This work motivated developments that will appear in MOSEK 9
(presented at ISMP 2018).

What can you model with MICP?

It is possible to model a broad scope of problems using MILP. What
more can you do if allowed to model with convex constraints?

-2 -1 0 1 2 3 -2 -1 0 1 2 3

Ceria and Soares (1999) develop MICP formulations for unions of
certain (e.g., bounded) convex sets.

See L., Zadik, and Vielma (IPCO 2017, arXiv 1706.05135) for much more
on this.

Mixed-integer sum-of-squares optimization

+ Sum-of-squares constraints (which are convex) can be used to
model polynomial constraints, including trajectories of a
moving object

- Control decisions with discrete aspect (e.g., minimize number of
thrusts) yield integer constraints

Credit: Joey Huchette (SIAM Conference on Optimization, 2017)

We define MICP general form as:

T

min C'X:
XERN
Xex,
Xj € Z, vie[ll=A{,...,1},

where X is a closed, convex set, and the first | of N variables are
constrained to take integer values.

We can always assume objective is linear, via an epigraph
transformation.

When X is a polyhedron, this reduces to MILP.

Solution methods

+ Branch & bound - recursively partition possible assignments to
integer variables and use convex relaxations to prune the
search tree (Gupta and Ravindran, 1985; Bonami et al., 2013)

Solution methods

+ Branch & bound - recursively partition possible assignments to
integer variables and use convex relaxations to prune the
search tree (Gupta and Ravindran, 1985; Bonami et al., 2013)

- Iterative outer approximation (OA) - based on polyhedral
relaxation of convex constraints, solve a sequence of MILP
relaxations and convex subproblems (Duran and Grossmann,
1986; Leyffer, 1993; Bonami et al., 2008)

Solution methods

+ Branch & bound - recursively partition possible assignments to
integer variables and use convex relaxations to prune the
search tree (Gupta and Ravindran, 1985; Bonami et al., 2013)

- Iterative outer approximation (OA) - based on polyhedral
relaxation of convex constraints, solve a sequence of MILP
relaxations and convex subproblems (Duran and Grossmann,
1986; Leyffer, 1993; Bonami et al., 2008)

« LP-based branch & bound - use polyhedral relaxations within a
single branch & bound (B&B) search tree (Quesada and
Grossmann, 1992; Bonami et al., 2008)

Developing polyhedral relaxations

Suppose:
X ={xeR":gj(x)<0,vje[]}.

Then under assumptions on g;:

X ={xeR":gj(x)+Vgx)(x—x)<0,vx eR"je[]}.

Any finite subset of linearization points yields a polyhedral outer
approximation.

Given a polyhedral outer approximation P O X, consider:
min ¢'x:
X

XeP,
Xj € Z, Viell].

The above problem is a mixed integer linear relaxation.

Algorithmic idea: Iteratively improve the relaxation until lower
bound matches feasible solution.

n

What can go wrong?

Classical approaches form polyhedral outer approximations by a
finite collection of “gradient linearizations.” But a good polyhedral
outer approximation might need too many linear constraints.

Recall the ¢4 ball:

n
Bi={xeR":||x|1 <1} = {xe R": ZS,’XI‘ <1s¢€ {—1,+1}”}

i=1

13

n
Bi={xeR":||x|1 <1} = {xe R": Zs,-x,- <1,s¢€ {1,+1}”}

i=1

Standard LP extended formulation:

n
B1—{xeR”:3yeR”:—y<x<y,Zy,~<1}

i=1

The new formulation has 2n variables and 2n + 1 constraints versus
n variables and 2" constraints.

The same happens with smooth constraints

Hijazi et al. (2014) consider the set:

B, = {xe {0,1}": zn: (x,-—;>2 <

15

How to fix it?

Consider the equivalent extended formulation (B, = proj, B,):

n 2
B, = {(x,z) €{0,1}"xR": Y 7 < nT—17 (Xi - ;) <z,Vie [[”]]}
i=1

How to fix it?
Consider the equivalent extended formulation (B, = proj, B,):

n 2
B, = {(x,z) €{0,1}"xR": Y 7 < nT—17 (Xi - ;) <z,Vie [[”]]}
i=1

A polyhedral outer approximation in the space of (x,z) needs only
2n hyperplanes to exclude all integer points.

Say a user writes down a constraint:
z > f(x) + g(x).

If fand g are convex, then extended formulation is obtained by
introducing tq, t; such that:

Z>t+t,t > f(x),ta > g(x).

But f+ g convex doesn’t imply fand g convex (e.g., f(x) = X3 — x4 and
g(x) = 2x3).

Say a user writes down a constraint:
z > f(x) + g(x).

If fand g are convex, then extended formulation is obtained by
introducing tq, t; such that:

Z>t+t,t > f(x),ta > g(x).

But f+ g convex doesn’t imply fand g convex (e.g., f(x) = X3 — x4 and
g(x) = 2x3).
So if we have access to the algebraic representation, in principle

need to solve a subproblem of convexity detection before
constructing extended formulation.

Convexity detection is hard.

Say a user writes down a constraint:
z > f(x) + g(x).

If fand g are convex, then extended formulation is obtained by
introducing tq, t; such that:

Z>t+t,t > f(x),ta > g(x).

But f+ g convex doesn’t imply fand g convex (e.g., f(x) = X3 — x4 and
g(x) = 2x3).
So if we have access to the algebraic representation, in principle

need to solve a subproblem of convexity detection before
constructing extended formulation.

Convexity detection is hard. (But some solvers try.)

Conic optimization solves the problem

min c'x:
X

b-AxcK

A set K C R" is a closed convex cone if it is closed and contains all
conic combinations of its points, i.e.,

oy + Y €K Vo, ap > 0 WY € K.

The constraint .
log (Z exp(Xi)) <z
i—1

is convex, not separable. Converting it to conic form exposes the
summation structure.

19

The constraint .
log (Z exp(Xi)) <z
i—1

is convex, not separable. Converting it to conic form exposes the
summation structure.

k

> exp(x;) < exp(2)

i=1

k
Zexp(x,- —-27) <1
i=1

k

Jy:) yi<1and Vi, (y;,1,%—2) €E,
i=1
where £ = cone({(r,t) : r > exp(t)}).

19

In general...

« “Lectures on Modern Convex Optimization” by Ben-Tal and
Nemirovski is the canonical source for how to write a problem
in conic form.

- Disciplined convex programming (DCP) provides a systematic
and easy-to-use approach to translating algebraic expressions
into conic form (CVX, CVXPY, Convex.jl)

« If not convinced, read more at “Polyhedral Approximation in
Mixed-integer Convex Optimization”, Math Programming B, 2017.

20

Which cones are needed?

+ Nonnegative orthant R, = {te R" : t > 0}

- Second-order cone £™" = {(r,t) e R™™" : r > [|t],}

- Exponential cone & =cl ({(r,s,t) e R*:5>0,r > sexp (})})

* PSD cone S = {T €S" : A\min(T) > 0}

- Power cone W,, = {(x,y,2) € R3: |z < x*y'~% x > 0,y > 0}
We categorized the 333 mixed-integer convex instances in the

MINLPLIB2 library according to conic representability. Excluding R"},
the following cones are needed:

‘ L only ‘ & only ‘ Land & ‘ W only ‘ Total ‘
| 217 | 107 | 7 | 2 | 333]

21

Open problems solved from MINLPLIB2

+ gams01, L+E-representable
- 145 variables, 1268 constraints (1158 linear)
+ Using CPLEX as MILP solver and KNITRO as convex solver,
iterative OA solved in 6 iterations (< 10 hours)
- Optimal solution is 21380.20 (previous best bound was 1735.06,
and best known solution was 21516.83)
- tls5 and tls6, L-representable, unsolved since 2001

- Solved in less than 24h by converting to MISOCP and then using
Gurobi

22

Mosek 9 adds support for the exponential and power cones (first
commercial solver).

https://docs.mosek.com/slides/2018/ismp2018/
ismp-andersen.pdf

23

https://docs.mosek.com/slides/2018/ismp2018/ismp-andersen.pdf
https://docs.mosek.com/slides/2018/ismp2018/ismp-andersen.pdf

Recall:

- Iterative OA: Solve a sequence of MILP relaxations

+ LP-based B&B: Use a single B&B tree with relaxations computed
by solving LPs

How to generate cuts in the conic case?

2%

A set K C R" is a closed convex cone if it is closed and contains all
conic combinations of its points, i.e.,

a1+ ¥ e X Yo, a; >0 Yy, ¥ € K. (1)

The dual cone of a set is defined as:

K*={zeR":y'z>0,VyeK}.

If C is a closed convex cone, then:

yeKeyz>0Vvze K",

25

Any finite subset Z C K* yields a polyhedral outer approximation of
KC. That is:
P:={xeR":xz>0vVze Z}.

P is a polyhedron that contains K.

We say that an element z € K* corresponds to a £* cut.

26

+ The second-order cone £ and PSD cone P are self-dual

+ The exponential cone £ is not self dual, but £* is easily
described

« KC* cuts can be validated by checking membership in dual cone

« K* cuts can be safely rounded by projection onto boundary of
dual cone

27

Compare with gradient inequalities:

X ={xeR":g(x) <0}

Then a'x < 3 is a gradient inequality iff there exists X' € R" such
that:

a = Vg;(x'),
B =Vg(x)x —g(x).

This is much harder to check.

28

Conic duality

Primal Dual
min ¢'x: max -b'z:
X
b-AxcK c+Az=0
ze K*

Reduces to LP duality when K = R/..

29

Conic duality can fail

The following MISOCP instance cannot be solved by the iterative OA
algorithm:

30

Conic duality can fail

The following MISOCP instance cannot be solved by the iterative OA

algorithm:
min Z
XY,z
Xy > 2%,
x =0,
y >0,
x €{0,1}.
Why not?

+ The optimal solution is zero
+ The dual of the root node relaxation is infeasible
- Any polyhedral OA is unbounded below

30

MI-conic form

T

min C'X:
X
b-AxcKk
Xi € Z Vi e [

(When applying B&B, we also assume known lower and upper
bounds on the integer-constrained variables.)

31

Certificate K* cuts

Suppose we solve:

min ¢'x:
X
b—AxeK (2)
i <x;i <uj Vi el (assuming [; < u;)

and obtain an optimal objective value T and dual solution z*
(ignoring multipliers on inequalities). Then

T=min c'x:
X

(b—Ax)"z* >0
[< x; < uj Vi e[l

32

Iterative OA uses certificate cuts with integer variables fixed to the
optimal solution returned from the MILP relaxation. (= finite
convergence)

LP-based B&B uses conic certificate cuts at multiple points in the
tree. Must use at least whenever a potential new incumbent integer
feasible solution is found.

133

Recall az* € K*Va > 0. Does it matter how we scale z*?

LP solvers almost never guarantee exact feasibility. Suppose
instead that we solve,

min c'x:
X
a(b — AX)TZ* > —€feas

[< x <uy ViE[[/ﬂ

This has optimal value > T — Z!

34

Recall az* € K*Va > 0. Does it matter how we scale z*?
LP solvers almost never guarantee exact feasibility. Suppose
instead that we solve,
min ¢'x:
X
a(b— Ax)'z* > —€feas
[< x <uy ViE[[/ﬂ

This has optimal value > T — Z!

So choose « to make “2 on the scale of the optimal objective, e.g,,
0.01T.

34

Separation * cuts

Given x such that b — Ax & KC, any hyperplane that separates b — Ax
from K can be shifted (if needed) to become a K* cut.

35

Example: If T ¢ S| then A\yin(T) < 0. Let 7 be an eigenvector
corresponding to the smallest eigenvalue of T. Then:

7T T = \nin(T) < 0,

so 77" € (S7)* corresponds to a K* cut that separates T from S”.

(2)

36

Example: If T ¢ S| then A\yin(T) < 0. Let 7 be an eigenvector
corresponding to the smallest eigenvalue of T. Then:

7T T = \nin(T) < 0, (2)

so 77" € (S7)* corresponds to a K* cut that separates T from S”.

SCIP-SDP (Gally et al., 2017) uses these cuts for MISDP. SCIP,
Gurobi, CPLEX, and Xpress use separation cuts for MISOCP.

36

Extensions to * cuts

Natural extensions to the K* cuts framework include:

1. Obtaining multiple K£* cuts from a single one by decomposing it
by products of cones or into extreme rays

2. Second-order cone outer approximation of the PSD cone

3. Lifting of the second-order cone (Vielma et al., 2016)

37

Pajarito

- An open-source MICP solver released in 2016

- Written in Julia, accessible through JuMP and via CBF files

+ Can use any conic and MILP solver available to JuMP
 Implements iterative OA and LP-based B&B using callbacks

Note: For convex MINLP see Pavito. This functionality was split off
last year from Pajarito.

38

v infeasible

solve OA model

let L = objective bound;
L, U converged? ves

l no

[integer sub-solution repea.ted?]

[solve subproblem; feasible?} (solution conic feasible?]

no yes l

OA fail

optimal

l yes no

[upda.te U and incurﬂbent] [update U and incumbent)

add certificate cuts add separation cuts

warm-start OA model with incumbeut)

The iterative OA algorithm in Pajarito.

39

infeasible

heuristic callback '

add stored solution [--- L e <o OA fail

4 solver on OA model

. T

; ! mt.cg.ral AT

lazy callback . solution
L4
integer sub-solution repeated?]
ﬁu y(\
{solve subproblem; feasible?} [solution conic feasible?]
no

yes no i

(store solution)—»[add certificate cutsJ [add separation CUtSJ

The LP-based B&B algorithm in Pajarito. We call it MIP-solver-driven
(MSD) because the MIP solver drives the algorithm.

40

Numerical experiments

+ Selection of 120 MISOCP instances from CBLIB library
« Solutions with large feasibility violations marked as ‘excluded’

- ‘conv’ means converged, ‘error’ means failed to converge, and
‘limit’ means timeout

- Time summaries presented as shifted geometric means
(TT,(t; + s))» — s with s = 10 seconds

41

Status summary

statuses time (s)

solver conv limit error excluded all conv
o Bonmin-BB 34 44 1 31 38.0
R a
5 Bonmin-0A 25 53 29 13 64.2
2 Bonmin-OA-D 30 48 29 13 15.1
g lter-GLPK 56 60 3 1 2.0
® Iter-CBC 78 30 3 9 1.6
- SCIP 74 35 8 3 3.2
(]
k] CPLEX 920 16 5 9 0.9
1,:, Iter-CPLEX 86 26 0 8 0.4
£ MSD-CPLEX 97 20 2 1 0.4

42

Performance profiles

Iter-CBC

CPLEX
MSD-CPLEX

Bonmin best

8 8

(a) Open source Bonmin (instance-wise (b) CPLEX MISOCP and Pajarito MSD
best of 3) and Pajarito iterative solvers. solvers.

43

Test of algorithic variants on 95 MICP instances with a variety of
cones:

- Experimental design: PSD cone and exponential cone

« Portfolio problems with risk constraints: exponential cone
(entropy risk), second-order cone (norm risk), PSD cone (robust
norm risk)

+ Retrofit-synthesis of process networks: exponential cone, from
MINLPLIB2

+ Representative MISOCP instances from CBLIB

A

Effect of certificate cut scaling

o Statuses

E -

o conv limit error excluded
5 off 63 1 28 3
£ on 69 1 22 3
% off 60 0 30 5

on 67 0 26 2

Significant improvement in reliability. Effect on solve time (not
shown) is hard to tell.

45

Joint work with Emre Yamangil, Chris Coey, Russell Bent, and Juan
Pablo Vielma.

+ “Extended Formulations in Mixed-integer Convex Programming”, IPCO 2016

+ “Polyhedral Approximation in Mixed-integer Convex Optimization”, Math
Programming B, 2017

+ “Outer Approximation With Conic Certificates For Mixed-Integer Convex
Problems”, arXiv:1808.05290

46

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	anm0:

