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Optimization

Given: Feasible region S and objective function f : S→ R

Find: x ∈ S with lowest possible value of f(x) (global solution)

How to solve?

• Local search (e.g., gradient descent), genetic algorithms, ...
• Approximate or reformulate (if lucky) as another optimization
problem we know how to solve to a global solution

1



Optimization

Given: Feasible region S and objective function f : S→ R

Find: x ∈ S with lowest possible value of f(x) (global solution)

How to solve?

• Local search (e.g., gradient descent), genetic algorithms, ...
• Approximate or reformulate (if lucky) as another optimization
problem we know how to solve to a global solution

1



Which optimization problems can we solve to global optimality?

• Integer programming
• Convex optimization
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In this talk, we consider mixed-integer convex optimization, or
mixed-integer convex programming (MICP).

These are convex optimization problems with integrality constraints.

We look for global solutions or at least global bounds.
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Themes

We apply extended formulations, conic duality, and branch and cut
to get a state-of-the-art open-source MICP solver.

This work motivated developments that will appear in MOSEK 9
(presented at ISMP 2018).
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What can you model with MICP?

It is possible to model a broad scope of problems using MILP. What
more can you do if allowed to model with convex constraints?

-2 -1 0 1 2 3
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ceria and Soares (1999) develop MICP formulations for unions of
certain (e.g., bounded) convex sets.

See L., Zadik, and Vielma (IPCO 2017, arXiv 1706.05135) for much more
on this.
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A fun example

Mixed-integer sum-of-squares optimization

• Sum-of-squares constraints (which are convex) can be used to
model polynomial constraints, including trajectories of a
moving object

• Control decisions with discrete aspect (e.g., minimize number of
thrusts) yield integer constraints
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Credit: Joey Huchette (SIAM Conference on Optimization, 2017)
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We define MICP general form as:

min
x∈RN

cTx :

x ∈ X ,

xi ∈ Z, ∀i ∈ JIK = {1, . . . , I},

where X is a closed, convex set, and the first I of N variables are
constrained to take integer values.

We can always assume objective is linear, via an epigraph
transformation.

When X is a polyhedron, this reduces to MILP.
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Solution methods

• Branch & bound – recursively partition possible assignments to
integer variables and use convex relaxations to prune the
search tree (Gupta and Ravindran, 1985; Bonami et al., 2013)

• Iterative outer approximation (OA) – based on polyhedral
relaxation of convex constraints, solve a sequence of MILP
relaxations and convex subproblems (Duran and Grossmann,
1986; Leyffer, 1993; Bonami et al., 2008)

• LP-based branch & bound – use polyhedral relaxations within a
single branch & bound (B&B) search tree (Quesada and
Grossmann, 1992; Bonami et al., 2008)
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Developing polyhedral relaxations

Suppose:
X =

{
x ∈ Rn : gj(x) ≤ 0,∀j ∈ JJK} .

Then under assumptions on gj:

X =
{
x ∈ Rn : gj(x′) +∇gj(x′)T(x− x′) ≤ 0,∀x′ ∈ Rn, j ∈ JJK} .

Any finite subset of linearization points yields a polyhedral outer
approximation.
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Given a polyhedral outer approximation P ⊃ X , consider:

min
x

cTx :

x ∈ P,
xi ∈ Z, ∀i ∈ JIK .

The above problem is a mixed integer linear relaxation.

Algorithmic idea: Iteratively improve the relaxation until lower
bound matches feasible solution.
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An illustration:

c

x′

x∗

x′
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What can go wrong?
Classical approaches form polyhedral outer approximations by a
finite collection of “gradient linearizations.” But a good polyhedral
outer approximation might need too many linear constraints.
Recall the ℓ1 ball:

B1 = {x ∈ Rn : ||x||1 ≤ 1} =

{
x ∈ Rn :

n∑
i=1

sixi ≤ 1, s ∈ {−1,+1}n
}
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B1 = {x ∈ Rn : ||x||1 ≤ 1} =

{
x ∈ Rn :

n∑
i=1

sixi ≤ 1, s ∈ {−1,+1}n
}

Standard LP extended formulation:

B1 =

{
x ∈ Rn : ∃ y ∈ Rn : −y ≤ x ≤ y,

n∑
i=1

yi ≤ 1
}

The new formulation has 2n variables and 2n+ 1 constraints versus
n variables and 2n constraints.
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The same happens with smooth constraints
Hijazi et al. (2014) consider the set:

B2 =

{
x ∈ {0, 1}n :

n∑
i=1

(
xi −

1
2

)2
≤ n− 1

4

}
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How to fix it?
Consider the equivalent extended formulation (B2 = projx B̂2):

B̂2 =

{
(x, z) ∈ {0, 1}n × Rn :

n∑
i=1

zi ≤
n− 1
4 ,

(
xi −

1
2

)2
≤ zi,∀i ∈ JnK}

A polyhedral outer approximation in the space of (x, z) needs only
2n hyperplanes to exclude all integer points.

16



How to fix it?
Consider the equivalent extended formulation (B2 = projx B̂2):

B̂2 =

{
(x, z) ∈ {0, 1}n × Rn :

n∑
i=1

zi ≤
n− 1
4 ,

(
xi −

1
2

)2
≤ zi,∀i ∈ JnK}

A polyhedral outer approximation in the space of (x, z) needs only
2n hyperplanes to exclude all integer points.

16



Say a user writes down a constraint:

z ≥ f(x) + g(x).

If f and g are convex, then extended formulation is obtained by
introducing t1, t2 such that:

z ≥ t1 + t2, t1 ≥ f(x), t2 ≥ g(x).

But f+ g convex doesn’t imply f and g convex (e.g., f(x) = x21 − x22 and
g(x) = 2x22).

So if we have access to the algebraic representation, in principle
need to solve a subproblem of convexity detection before
constructing extended formulation.

Convexity detection is hard. (But some solvers try.)
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Conic optimization solves the problem

min
x

cTx :

b− Ax ∈ K

A set K ⊆ Rn is a closed convex cone if it is closed and contains all
conic combinations of its points, i.e.,

α1y1 + α2y2 ∈ K ∀α1, α2 ≥ 0 ∀y1, y2 ∈ K.
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An example

The constraint

log

( k∑
i=1

exp(xi)
)

≤ z

is convex, not separable. Converting it to conic form exposes the
summation structure.

k∑
i=1

exp(xi) ≤ exp(z)

k∑
i=1

exp(xi − z) ≤ 1

∃ y :
k∑
i=1

yi ≤ 1 and ∀ i, (yi, 1, xi − z) ∈ E ,

where E = cone({(r, t) : r ≥ exp(t)}).
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In general...

• “Lectures on Modern Convex Optimization” by Ben-Tal and
Nemirovski is the canonical source for how to write a problem
in conic form.

• Disciplined convex programming (DCP) provides a systematic
and easy-to-use approach to translating algebraic expressions
into conic form (CVX, CVXPY, Convex.jl)

• If not convinced, read more at “Polyhedral Approximation in
Mixed-integer Convex Optimization”, Math Programming B, 2017.
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Which cones are needed?

• Nonnegative orthant Rn
+ = {t ∈ Rn : t ≥ 0}

• Second-order cone L1+n =
{
(r, t) ∈ R1+n : r ≥ ∥t∥2

}
• Exponential cone E = cl

({
(r, s, t) ∈ R3 : s > 0, r ≥ s exp

( t
s
)})

• PSD cone Sn+ = {T ∈ Sn : λmin(T) ≥ 0}
• Power coneWα = {(x, y, z) ∈ R3 : |z| ≤ xαy1−α, x ≥ 0, y ≥ 0}

We categorized the 333 mixed-integer convex instances in the
MINLPLIB2 library according to conic representability. Excluding Rn

+,
the following cones are needed:

L only E only L and E W only Total
217 107 7 2 333
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Open problems solved from MINLPLIB2

• gams01, L+E-representable
• 145 variables, 1268 constraints (1158 linear)
• Using CPLEX as MILP solver and KNITRO as convex solver,
iterative OA solved in 6 iterations (< 10 hours)

• Optimal solution is 21380.20 (previous best bound was 1735.06,
and best known solution was 21516.83)

• tls5 and tls6, L-representable, unsolved since 2001
• Solved in less than 24h by converting to MISOCP and then using
Gurobi
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Mosek 9 adds support for the exponential and power cones (first
commercial solver).

https://docs.mosek.com/slides/2018/ismp2018/
ismp-andersen.pdf
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Recall:

• Iterative OA: Solve a sequence of MILP relaxations
• LP-based B&B: Use a single B&B tree with relaxations computed
by solving LPs

How to generate cuts in the conic case?
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A set K ⊆ Rn is a closed convex cone if it is closed and contains all
conic combinations of its points, i.e.,

α1y1 + α2y2 ∈ K ∀α1, α2 ≥ 0 ∀y1, y2 ∈ K. (1)

The dual cone of a set is defined as:

K∗ =
{
z ∈ Rn : yTz ≥ 0,∀y ∈ K

}
.

If K is a closed convex cone, then:

y ∈ K ⇔ yTz ≥ 0,∀z ∈ K∗.
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Any finite subset Z ⊆ K∗ yields a polyhedral outer approximation of
K. That is:

P :=
{
x ∈ Rn : xTz ≥ 0,∀z ∈ Z

}
.

P is a polyhedron that contains K.

We say that an element z ∈ K∗ corresponds to a K∗ cut.
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• The second-order cone L and PSD cone P are self-dual
• The exponential cone E is not self dual, but E∗ is easily
described

• K∗ cuts can be validated by checking membership in dual cone
• K∗ cuts can be safely rounded by projection onto boundary of
dual cone
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Compare with gradient inequalities:

X = {x ∈ Rn : g(x) ≤ 0}.

Then αTx ≤ β is a gradient inequality iff there exists x′ ∈ Rn such
that:

α = ∇gj(x′),
β = ∇gj(x′)Tx′ − g(x′).

This is much harder to check.
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Conic duality

Primal

min
x

cTx :

b− Ax ∈ K

Dual

max
z

−bTz :

c+ ATz = 0
z ∈ K∗

Reduces to LP duality when K = RN
+.
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Conic duality can fail

The following MISOCP instance cannot be solved by the iterative OA
algorithm:

min
x,y,z

z :

xy ≥ z2,
x = 0,
y ≥ 0,
x ∈ {0, 1}.

Why not?

• The optimal solution is zero
• The dual of the root node relaxation is infeasible
• Any polyhedral OA is unbounded below
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MI-conic form

min
x

cTx :

b− Ax ∈ K
xi ∈ Z ∀i ∈ JIK

(When applying B&B, we also assume known lower and upper
bounds on the integer-constrained variables.)
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Certificate K∗ cuts

Suppose we solve:

min
x

cTx :

b− Ax ∈ K (z)
li ≤ xi ≤ ui ∀i ∈ JIK (assuming li ≤ ui)

and obtain an optimal objective value T and dual solution z∗
(ignoring multipliers on inequalities). Then

T = min
x

cTx :

(b− Ax)Tz∗ ≥ 0
li ≤ xi ≤ ui ∀i ∈ JIK
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Iterative OA uses certificate cuts with integer variables fixed to the
optimal solution returned from the MILP relaxation. (⇒ finite
convergence)

LP-based B&B uses conic certificate cuts at multiple points in the
tree. Must use at least whenever a potential new incumbent integer
feasible solution is found.
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Recall αz∗ ∈ K∗∀α ≥ 0. Does it matter how we scale z∗?
LP solvers almost never guarantee exact feasibility. Suppose
instead that we solve,

min
x

cTx :

α(b− Ax)Tz∗ ≥ −ϵfeas

li ≤ xi ≤ ui ∀i ∈ JIK
This has optimal value ≥ T− ϵfeas

α !

So choose α to make ϵfeas
α on the scale of the optimal objective, e.g.,

0.01T.
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Separation K∗ cuts

Given x such that b− Ax ̸∈ K, any hyperplane that separates b− Ax
from K can be shifted (if needed) to become a K∗ cut.
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Example: If T ̸∈ Sn+ then λmin(T) < 0. Let τ be an eigenvector
corresponding to the smallest eigenvalue of T. Then:

τ Tτ · T = λmin(T) < 0, (2)

so ττ T ∈ (Sn+)∗ corresponds to a K∗ cut that separates T from Sn+.

SCIP-SDP (Gally et al., 2017) uses these cuts for MISDP. SCIP,
Gurobi, CPLEX, and Xpress use separation cuts for MISOCP.
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Extensions to K∗ cuts

Natural extensions to the K∗ cuts framework include:

1. Obtaining multiple K∗ cuts from a single one by decomposing it
by products of cones or into extreme rays

2. Second-order cone outer approximation of the PSD cone
3. Lifting of the second-order cone (Vielma et al., 2016)
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Pajarito
• An open-source MICP solver released in 2016
• Written in Julia, accessible through JuMP and via CBF files
• Can use any conic and MILP solver available to JuMP
• Implements iterative OA and LP-based B&B using callbacks

Note: For convex MINLP see Pavito. This functionality was split off
last year from Pajarito.
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The iterative OA algorithm in Pajarito. 39



The LP-based B&B algorithm in Pajarito. We call it MIP-solver-driven
(MSD) because the MIP solver drives the algorithm.
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Numerical experiments

• Selection of 120 MISOCP instances from CBLIB library
• Solutions with large feasibility violations marked as ‘excluded’
• ‘conv‘ means converged, ‘error’ means failed to converge, and
‘limit’ means timeout

• Time summaries presented as shifted geometric means
(
∏n

i=1(ti + s)) 1
n − s with s = 10 seconds
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Status summary

statuses time (s)

solver conv limit error excluded all conv

op
en

so
ur
ce Bonmin-BB 34 44 11 31 38.0

Bonmin-OA 25 53 29 13 64.2
Bonmin-OA-D 30 48 29 13 15.1
Iter-GLPK 56 60 3 1 2.0
Iter-CBC 78 30 3 9 1.6

re
st
ric
te
d SCIP 74 35 8 3 3.2

CPLEX 90 16 5 9 0.9
Iter-CPLEX 86 26 0 8 0.4
MSD-CPLEX 97 20 2 1 0.4
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Performance profiles
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Test of algorithic variants on 95 MICP instances with a variety of
cones:

• Experimental design: PSD cone and exponential cone
• Portfolio problems with risk constraints: exponential cone
(entropy risk), second-order cone (norm risk), PSD cone (robust
norm risk)

• Retrofit-synthesis of process networks: exponential cone, from
MINLPLIB2

• Representative MISOCP instances from CBLIB
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Effect of certificate cut scaling

statuses

sc
al
e

conv limit error excluded
Ite
r off 63 1 28 3

on 69 1 22 3

M
SD off 60 0 30 5
on 67 0 26 2

Significant improvement in reliability. Effect on solve time (not
shown) is hard to tell.
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Thanks!

Joint work with Emre Yamangil, Chris Coey, Russell Bent, and Juan
Pablo Vielma.

• “Extended Formulations in Mixed-integer Convex Programming”, IPCO 2016

• “Polyhedral Approximation in Mixed-integer Convex Optimization”, Math
Programming B, 2017

• “Outer Approximation With Conic Certificates For Mixed-Integer Convex
Problems”, arXiv:1808.05290
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