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We present a novel approach for solving dense saddle-point linear systems in a distributed-
memory environment. This work is motivated by an application in stochastic optimization
problems with recourse, but the proposed approach can be used for a large family of dense
saddle-point systems, in particular those arising in convex programming. Although stochastic
optimization problems have many important applications, they can present serious computa-
tional difficulties. In particular, sample average approximation (SAA) problems with a large
number of samples are often too big to solve on a single shared-memory system. Recent work
has developed interior point methods and specialized linear algebra to solve these problems
in parallel, using a scenario-based decomposition that distributes the data and work across
computational nodes. Even for sparse SAA problems, the decomposition produces a dense and
possibly very large saddle-point linear system that must be solved repeatedly. We developed
a specialized parallel factorization procedure for these systems, together with a streamlined
method for assembling the distributed dense matrix. Strong scaling tests indicate over 90%
efficiency on 1,024 cores on a stochastic unit commitment problem with 57 million variables.
Stochastic unit commitment problems with up to 189 million variables are solved efficiently
on up to 2,048 cores.
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1. Introduction

In this paper we consider two-stage stochastic convex problems with recourse of
the form

min

(
1

2
xT0 Q0x0 + cT0 x0

)
+ E[G(x0, ξ)] subject to T0x0 = b0, x0 ≥ 0, (1)

where, for a given realization ξ̃ of the random vector ξ, the recourse function
G(x0, ξ̃) is the optimal value of the second-stage problem (2) parameterized by the
realization ξ̃. The expectation E[·] is taken with respect to the density function of
ξ. The matrix Q0 is symmetric positive definite, and the matrix T0 has full rank.
The second-stage problem is a convex quadratic programming problem of the form

min
1

2
yTQy + cT y subject to Wy = b− Tx0, y ≥ 0. (2)
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The problem is parameterized by ξ in the sense that the random entries of the data
(Q, c, T,W ) form the random vector ξ. We assume that Q is symmetric positive
semidefinite, and that the technology matrix T and recourse matrix W have full
rank for any realization of ξ.

The convexity of the second-stage quadratic problem implies that the recourse
function is convex [3]. Also, the recourse function G(x0, ξ̃) is nonlinear in general.
Therefore, problem (1) is a nonlinear convex optimization problem, although in the
literature problem (1) is called a two-stage stochastic convex quadratic problem
with recourse (TCQP) [14], and we adopt this terminology. In addition to the fact
that the second-stage problem is a QP, the term TCQP is used because any TCQP
can be reformulated as an equivalent convex QP when the support of ξ is finite,
or it is approximated by a convex QP when the support of ξ is a not finite, as we
show below.

Sampling methods such as Monte Carlo, Latin hypercube sampling, and impor-
tance sampling, etc. are used to make the computation of the expected value term
and its derivative(s) tractable from a computational point of view. Once a finite
sample (ξ1, ξ2, . . . , ξN ) of N realizations of the random vector ξ is obtained, the
recourse term E[G(x0, ξ)] is approximated by the average of the values G(x0, ξi),
i = 1, 2, . . . , N . This is the sample average approximation (SAA) approach, with
which one obtains a convex quadratic deterministic approximation to the TCQP
(1), which has the following form

min

(
1

2
xT0 Q0x0 + cT0 x0

)
+

1

N

N∑
i=1

(
1

2
xTi Qixi + cTi xi

)
subj to T0x0 = b0,

T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(3)

Interior-point methods (IPMs) have been used as early as 1988 to decompose and
solve SAA problems [4]. The SAA problems are usually extremely large and even
in the sparse case they can be solved only by means of distributed computing. The
decomposition of the problem in the context of IPMs is usually achieved at the
linear algebra level by taking advantage of the block-separable form of the objective
function and the half-arrow shape of the Jacobian. This special structure allows
most of the work related to IPM linear solves to be done independently for each
sample when a Schur complement mechanism is used. Parallel implementations of
IPMs using the Schur complement decomposition have been done in state-of-the-art
software packages such as OOPS [11–13] and IPOPT [19].

Recently we implemented PIPS, a parallel IPM solver in C++ based on OOQP
[9] that uses the Schur complement decomposition to solve SAA problems. We
achieved very good strong scaling from 80 to 1000 cores (77% efficiency) on a
stochastic unit commitment problem (described in Section 4.1) with 29 million
variables. The main obstacle to solving larger instances of this problem on a larger
number of cores was a memory usage bottleneck described in Section 2 that is
caused by the number of variables in the first-stage problem. The present work
removes this bottleneck by performing the linear algebra related to the first-stage
problem in a parallel, distributed-memory MPI-based framework.

In the context of interior-point methods applied to SAA problems of the form



Optimization Methods and Software 3

(3), the linear algebra operations associated with the first-stage consist of solving
symmetric indefinite systems of the form

C =

[
Q AT

A 0

]
, (4)

where Q is a dense, symmetric positive definite matrix and A is a full-rank rectan-
gular matrix, see Section 2 for a detailed discussion. Systems with matrices of this
form are also known as saddle-point linear systems.

The size of the matrix Q can be very large; for example, it can approach 100,000
by 100,000 in the case of the stochastic unit commitment problem with wind power
generation presented in Section 4.1. Such large, dense linear systems can be solved
efficiently by using existing libraries for parallel dense linear algebra such as ScaLA-
PACK, PLAPACK, and Elemental. This is the approach that we follow; however,
there are two issues that we address and solve in this paper.

The first issue is the lack of a parallel solver for symmetric indefinite dense linear
systems. Instead, one must use an LU-based solver for general matrices, which is
twice as expensive. We overcome this drawback by implementing a specialized
Cholesky-based LDLT factorization. Such factorization has been previously used
in the sparse context, see the review article by Benzi et. al. [2], however, to our
knowledge, it was not implemented before for dense saddle-point systems in a
distributed memory environment.

The second difficulty is specific to stochastic optimization problems and comes
from assembling the distributed saddle-point matrix (4). More specifically, C needs
to be distributed across processors as required by the particular parallel solver,
but all processors contribute to all of the elements of the Q block. Therefore a
large amount of inter-process communication (in the form of “reduce” operations)
is required in the assembly operation. This can incur a significant cost, possibly
greater than the cost of factorization. We describe a technique that yields good
large-scale performance. It uses efficient Reduce scatter operations that maximize
network bandwidth given the available memory on each node.

The paper is organized as follows. In Section 2 we outline the linear algebra re-
quired by interior-point methods for solving the stochastic SAA problems, and we
present the Schur complement-based decomposition used to parallelize the compu-
tation of Q. In Section 3 we describe the parallel dense linear solvers ScaLAPACK
and Elemental and our LDLT factorization based on Elemental. We also give the
implementation details of the specialized reduce operations we use to distribute
the saddle-point dense linear system. In Section 4 we investigate and report on the
large-scale performance of our code (up to 2,048 cores). The conclusions of this
work and related future research directions are given in Section 5.

2. Schur complement decomposition of SAA problems

In this section we present the linear algebra needed to solve convex quadratic SAA
problems of the form (3) by interior-point methods. We refer the reader to [11],
[12], [13], or [15] for more details on how the linear algebra is derived.

The deterministic SAA problem (3) has a staircase structure that can be ex-
ploited to produce highly parallelizable linear algebra. The matrix of the linear
system that needs to be solved at each iteration of the interior-point algorithm has
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an arrow shape of the form

K :=


K1 B1

. . .
...

KN BN

BT
1 . . . BT

N K0

 . (5)

Here we used the following simplifying notation,

Ki :=

[
1
N Q̄i

1
NW

T
i

1
NWi 0

]
, K0 :=

[
Q̄0 W

T
0

W0 0

]
,

Bi :=

[
0 0

1
N Ti 0

]
, i = 1, 2, . . . , N,

where Q̄i = Qi + Di, i = 0, 1, . . . , N , with each Di being a diagonal matrix with
positive diagonal entries occurring from the use of interior-point algorithms.

Solving linear systems of the form K∆z = r is the main computational effort
at each iteration of the interior-point algorithm. Since K is symmetric, it can be
factorized as LDLT [10], where L is a unit lower triangular matrix and D is a
diagonal matrix. One can easily verify that L and D have the following particular
structures,

L =


L1

. . .

LN

LN1 . . . LNN Lc

 , D =


D1

. . .

DN

Dc

 ,

where

LiDiL
T
i = Ki, i = 1, . . . , N, (6)

LNi = BT
i L
−T
i D−1

i , i = 1 . . . , N, (7)

C = K0 −
N∑
i=1

BT
i K

−1
i Bi, (8)

LcDcL
T
c = C. (9)

We note that C defined by (8) is the Schur complement of the first-stage Hessian
block K0 in the entire Hessian matrix K.

Let ∆zi :=
[

∆xTi ∆yTi
]T

, i = 0, 1, . . . , N , ∆z :=
[

∆zT1 . . . ∆zTN ∆zT0
]T

, and let

r be of the form
[
rT1 . . . rTN rT0

]T
. To solve the linear system K∆z = r we take the
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following steps:

wi = L−1
i ri, i = 1, . . . , N, (10)

r̃0 = r0 −
N∑
i=1

LNiwi, (11)

vi = D−1
i wi, i = 1, . . . , N, (12)

w0 = L−1
c r̃0, (13)

v0 = D−1
0 w0, (14)

∆z0 = L−1
c v0, (15)

∆zi = L−Ti (vi − LNi∆z0), i = 1, . . . , N. (16)

Observe that the computations of each of the steps (6)-(8), (10)-(12), and (16)
can be done independently for each scenario i ∈ {1, . . . , N}. This observation is
the core of the Direct Schur complement (DSC) method which we implemented
in PIPS. However, the factorization (9) and steps (13)-(15) need to be performed
serially, that is identically on all processors (or only on one processor, while the
other processors are waiting). Obviously, the serial steps create a bottleneck in
the parallel execution flow, but for problems having a small number of first-stage
variables, the bottleneck has little negative impact on the performance of DSC
method. Unfortunately, as expected, the performance of the DSC method is con-
siderably affected when problems with a large number of first-stage variables are
solved. The Preconditioned Schur Complement (PSC) method we presented in [15]
uses a stochastic preconditioner for the Schur complement matrix C and Krylov
iterative methods for the solution of linear systems involving C to remove most of
the execution bottleneck. Consequently, PSC approach outperforms DSC method
on medium-sized first-stage problems (several thousands variables). However, PSC
experiences a different bottleneck caused by the insufficient memory in the case of
SAA problems with a larger number of first-stage variables (more than ∼10,000).
The memory usage bottleneck occurs because, for such problems, the Schur com-
plement matrix C does not fit the memory of a single computational node.

As shown in [15], C has the following simplified form,

C =

[
Q T T

0

T0 0

]
, (17)

where Q := Q̄0 + 1
N

N∑
i=1

T T
i

(
WiQ̄

−1
i W T

i

)−1
Ti. Each of the T T

i

(
WiQ̄

−1
i W T

i

)−1
Ti

terms becomes dense even when all the second-stage matrices are sparse. This
adverse behavior is somehow expected since, formally speaking, two matrices are
inverted and it is well known that matrix inversion destroys sparsity. Consequently,
the (1, 1) block Q of the Schur complement matrix C becomes dense. This is a
square block of the size of the number of first-stage variables. PSC, as well as
DSC, stores C as a dense matrix on each processor. As we previously mentioned,
this approach leads to a memory usage bottleneck because C becomes too large
to store completely on a node for some real-life problems with many first-stage
variables (more than ∼10,000). In this paper we propose an approach to remove the
memory bottleneck as well as the execution bottleneck. Our technique parallelizes
the first-stage linear algebra(i.e., steps (9) and(13)-(15)) of the DSC method in a
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distributed-memory computing environment.

3. Factorization and distribution of the dense system

Here, we present our solutions to the issues arising in the parallelization of the
dense linear algebra required in the first stage, whose details were just described
in Section 2. In Section 3.1 we provide an overview of existing parallel distributed-
memory linear algebra libraries, followed by our specialized factorization proce-
dure in Section 3.2. In Section 3.3 we describe the procedure for assembling the
distributed matrix.

3.1. Parallel solvers for dense linear systems

As described in Section 2, the linear system we must factorize and solve at each
iteration is a symmetric indefinite system with the following block form,

C =

[
Q AT

A 0

]
, (18)

where Q is fully dense, symmetric positive definite and A (= T0) is sparse and of
full rank. This is known as a standard saddle-point system. In the initial versions
of PIPS, we used the symmetric indefinite solver in LAPACK [1] (DSYSV), which
is based on the Bunch-Kaufman decomposition [6]. For the large-scale problems
that PIPS is designed to solve, storing the system entirely in local memory in order
to solve it by using LAPACK is infeasible. Our solution is to solve the system in
parallel in a distributed memory environment.

A review of the literature yielded a single parallel dense symmetric indefinite
solver by Strazdins and Lewis [17]; however, the code has not been maintained
in the past 10 years and was not incorporated into any major library. Strazdins
confirmed in correspondence that he was unaware of any other efforts. Also, we are
not aware of any solver specialized for dense saddle-point systems, either in serial
or in parallel.

Historically, the most important and most widely used parallel dense linear alge-
bra packages are ScaLAPACK [5] and PLAPACK [18]. A package currently under
development is Elemental [16], which claims significant performance improvements
over ScaLAPACK and PLAPACK. We chose to focus on ScaLAPACK and Ele-
mental; PLAPACK did not offer any particular advantages, and one may consider
Elemental as its successor. In Sections 3.1.1 and 3.1.2, we describe these pack-
ages and their particular methods of distributing the dense matrix across nodes.
The matrix distributions are the important, if not defining, characteristic of these
packages.

While all of these packages provide routines for LU and Cholesky decompositions,
none provides routines for symmetric indefinite systems. Cholesky decomposition
is not directly applicable to our linear system, since it is indefinite, and LU decom-
position requires double the number of operations necessary. In light of the lack of
an existing symmetric indefinite solver, we developed a specialized Cholesky-based
LDLT factorization procedure that exploits saddle-point structure of the matrix;
it is described in Section 3.2.

3.1.1. ScaLAPACK

ScaLAPACK (Scalable LAPACK) is a library designed to present an LAPACK-
like interface to dense, distributed linear algebra. The procedures follow LAPACK
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naming and calling conventions; however, not all LAPACK functions have been im-
plemented. In particular, while there is a PDGESV for solving general linear systems,
there is no “PDSYSV” procedure for solving symmetric indefinite systems.

For load balancing, ScaLAPACK uses a block-cyclic distribution so that all pro-
cessors “own” all parts of the matrix. First, a block size b is fixed, and the available
processors are arranged into an np ×mp processor grid. The matrix is partitioned
into blocks of size b × b. Irregular, small blocks are permitted at the boundaries
of the matrix. Using zero-based indexing, the block-cyclic distribution arises by
assigning block (i, j) to processor (i mod np, j mod mp). Each processor has a
single column-oriented local storage buffer, where the blocks are stored in their
original shape, as if there were no blocks of the matrix between them. See Figure
1 for an example.

Proc0,0

Distributed Matrix

Local Storage

Processor Grid

Figure 1. An illustration of the block-cyclic distribution used in ScaLAPACK, with blocksize 2 on a 2× 2
processor grid, 10×10 matrix. The mapping is shown between the blocks of the distributed matrix and the
local storage on processor (0, 0). The blocks belonging to each processor are marked with a pattern. The
highlighted square in black illustrates the element-to-element mapping. The size of blocks in the processor
grid indicates the size of the local storage; note that it need not be uniform.

The above is a fairly complete description of the block-cyclic distribution at a
high level. Additionally, one may consider non-square blocks, but these are sup-
ported only for some operations in ScaLAPACK. The formulas for calculating the
exact index mappings become somewhat complex; they are covered in full detail
in [5].

A particularity of ScaLAPACK is that these storage blocks are the same blocks
used algorithmically. In the ScaLAPACK implementations of direct factorizations
(LU and Cholesky), large algorithmic blocks achieve optimal cache performance,
while small storage blocks yield the best load balancing. Hence, there is an in-
evitable compromise when choosing the optimal block size. We also found that the
coupling of the storage and algorithmic blocks imposes other, severe restrictions.
For example, ScaLAPACK has the ability to perform operations on sub-matrices
of the distributed matrix, but the sub-matrices must be completely aligned with
the storage blocks, that is, the top left element of a sub-matrix must be the top left
element of a storage block. In Section 3.2 we describe how this restriction prevented
implementing our specialized LDLT factorization in ScaLAPACK.
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3.1.2. Elemental

Elemental is a new library intended to replace ScaLAPACK and PLAPACK. It
is under active development.

Proc0,0

Distributed Matrix

Local Storage

Processor Grid

Figure 2. Illustration of the element-cyclic distribution used in Elemental on a 2 × 2 processor grid,
10 × 10 matrix. The mapping is shown between elements of the distributed matrix and the local storage
on processor (0, 0). The blocks belonging to each processor are marked with a pattern.

The distinguishing characteristics of Elemental are the element-cyclic matrix
storage distribution, which is precisely the block-cyclic ScaLAPACK distribution
with a blocksize of 1 (see Figure 2), and the separation of the storage and al-
gorithmic sizes. In Elemental one can use large algorithmic blocksizes to obtain
the best cache performance without compromising the load balancing, which in
fact is the best possible since the storage blocks are of size 1. The element-cyclic
distribution requires Elemental to use more elaborate and possibly more costly
communication patterns than ScaLAPACK. However, the abovementioned bene-
fits of the element-cyclic distribution prevail over the communication overhead,
and Elemental outperforms ScaLAPACK in the tests presented in [16]. Another
important feature of the “elemental” matrix distribution is the ability to perform
operations on arbitrary sub-matrices, because there are no misalignment issues.
We fully exploited this feature in our specialized LDLT factorization.

3.2. Specialized Cholesky-based LDLT factorization

Although using a general LU factorization routine to solve the linear system C
given by (18) presents a practicable solution, it is not ideal. We would expect to
be able to gain a 2x increase in performance by using an algorithm that at least
exploited the symmetric structure. We describe below a specialized LDLT factor-
ization algorithm that exploits both the symmetric and the saddle-point structure
of C, and we analyze the flop count.

3.2.1. Algorithm

Every symmetric indefinite matrix whose diagonal is not all zeros has a decompo-
sition LDLT where L is lower triangular and D is diagonal [7]. This decomposition
is usually avoided in practice because of the numerical instabilities that may arise
when the elements of the diagonal of the matrix all approach zero. Instead, a
slightly modified decomposition is used, taking D to be a block-diagonal matrix
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with blocks of size 1 or 2. This is used in the Bunch-Kaufman [6] and Bunch-
Parlett [7] methods.

In the case of the saddle-point system C (18), however, because the Q block
is positive definite and the matrix A is full-rank, a LDLT factorization with D
strictly diagonal always exists. This can be seen by writing[

Q AT

A 0

]
=

[
M 0

AM−T M̃

] [
I 0
0 −I

] [
MT M−1AT

0 M̃T

]
, (19)

where M and M̃ are lower triangular Cholesky factors satisfying MMT = Q and

M̃M̃T = AQ−1AT . These factors necessarily exist because Q is positive definite,
and therefore AQ−1AT is positive definite as well because A has full rank.

Benzi et al. [2] note that the factorization (19) is more efficient than Bunch-
Kaufman because no pivoting is required; in addition, it is sufficiently numerically
stable since it couples two Cholesky factorizations. The use of this factorization
may be disadvantageous in the sparse case, because a large amount of fill-in may
occur in the factors. Obviously, this is not the case in this work since our matrix
is dense. To our knowledge, there has been no previous attempt to solve dense
saddle-point systems in parallel by using an LDLT factorization of form (19) or
any other specialized approach.

What makes this factorization practical is that it can be performed in-place on
the distributed matrix. Let us denote the four logical blocks of the distributed
matrix as follows:

B =

[
B00 B01

B10 B11

]
(20)

where B = C initially, that is B00 = Q,B10 = A,B01 = AT , B11 = 0; in fact, only
the lower triangle must be filled. We perform a sequence of standard linear algebra
operations on B, after which B contains the lower triangular L factor. See Figure 3
for the procedure.

Specialized LDLT Procedure
In-place factorization
1. B00 ←− Cholesky(B00) (= Cholesky(Q) = M)

2. B10 ←− B10B
−T
00 (= AM−T ) (trsm)

3. B11 ←− (B10)(B10)T (= (AM−T )(AM−T )T = AQ−1AT ) (syrk)

4. B11 ←− Cholesky(B11) (= Cholesky(AQ−1AT ) = M̃)
Solving Sx = b
5. b←− L−1b (trsv)
6. b←− D−1b (ad-hoc)
7. b←− L−T b (trsv)

Figure 3. Specialized procedure for solving the saddle-point system S. After the factorization, the lower
triangle of B contains L. The name of the operations in standard BLAS terms is in parentheses. The
operations are described in the text.

The operations used are Cholesky factorization, triangular solve (trsm, trsv),
and symmetric rank-k update (syrk). On line 2, trsm is used to solve a matrix
triangular system of the form XY T = Z for X, overwriting Z with the answer.
On line 3, a symmetric rank-k update performs the operation Z ←− αXXT + βZ,
where we take α = 1, β = 0. The sequence of operations is similar to a step of
blocked right-looking Cholesky factorization [18].
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In the solution phase, the trsv operation solves a simple triangular system Zx = b
or ZTx = b. Note that D = D−1. Then, multiplication by D−1 can be performed
ad-hoc by simply negating the lower part of the right-hand side vector.

Cholesky factorization, triangular solve, and symmetric rank-k update are stan-
dard operations that, in principle, are provided by both ScaLAPACK and Ele-
mental. In both ScaLAPACK and Elemental, these operations can also operate
on sub-matrices of a distributed matrix, a property that is fully exploited above.
However, as we previously mentioned, ScaLAPACK has an important caveat: the
sub-matrices must align with the storage blocks. Given that Q may be of arbitrary
size and that there is a practical limit on the size of a storage block, this restric-
tion is effectively impossible to satisfy in the given context without extensively
modifying ScaLAPACK’s source code. Therefore, this procedure was only imple-
mented by using Elemental, requiring just five lines of code in C++ to perform the
factorization.

3.2.2. Flop count

We analyze here the number of operations required by the algorithm above, in
order to confirm the desired theoretical 2x decrease in operation count over LU
factorization. Only the higher-order terms are counted.

Note first that for an n × n matrix, LU decomposition requires 2
3n

3 floating-
point operations, and both Cholesky and Bunch-Kaufman (symmetric indefinite)
decompositions require 1

3n
3. Both LU and Bunch-Kaufman require an additional

O(n2) comparisons to perform pivoting [6].
Now let n be the size of Q and m be the number of rows in A (Q ∈ Rn×n, A ∈

Rm×n). Then the entire matrix is (n+m)× (n+m). We verify that trsm requires
mn2 operations and syrk requires m2n operations.

For trsm (B10B
−T
00 ) one may verify that a triangular solve requires n2 operations;

this is performed m times, resulting in mn2 operations. For syrk ((B10)(B10)T ): this
is a normal matrix-matrix multiplication, but only the lower triangle is calculated.
Each of the 1

2m
2 elements requires n multiplications and n− 1 additions, resulting

in m2n operations.
The specialized LDLT factorization therefore requires 1

3n
3 +m2n+mn2 + 1

3m
3 =

1
3(n + m)3 floating-point operations. This is the same number of flops as Bunch-
Kaufman and half those of an LU decomposition, confirming that we have achieved
the goal of a factorization routine that requires half the operations of LU and, in
theory, should deliver twice the performance. Also note that no comparisons are
required in this case, unlike both LU and general symmetric indefinite factorization
routines.

As a final observation, recall that the A block is in reality sparse, although it has
been treated as a block of a dense matrix. We implemented it as such, but one may
be able to significantly reduce communication costs and flops in the trsm stage
by storing A as a sparse matrix on each processor and implementing a specialized
triangular solve routine. However, since the number of rows of A is less than the
the number of rows of Q, usually much more smaller, this would likely be a minor
optimization.

3.2.3. As a saddle-point solver

We note that the method proposed applies with only a slight modification to a
more general dense saddle-point system of the form

C =

[
Q AT

A −S

]
, (21)
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where S is symmetric positive semidefinite and Q and A are symmetric positive
definite and of full rank, respectively, as above. The only modification necessary
to the algorithm in Figure 3 is at Step 3 to include S in the Schur complement.
This saddle-point system (21) has applications outside of constrained optimization,
which are referenced in [2].

3.3. Assembling the matrix

We have assumed up to this point that the linear system is already distributed
across processors as required by Elemental or ScaLAPACK. However, assembling
the matrix and distributing it as required can be a costly operation, possibly more
costly than the factorization itself. This operation must be streamlined to obtain
acceptable large-scale performance.

We present a simplified version of the summation that was more fully described
in Section 2. Let B refer to the distributed matrix, partitioned as in (20). Let P be
the set of processors. The distribution operation we must perform can be described
simply as

B00 =
∑
p∈P

Mp, (22)

where Mp is calculated locally on processor p and B00 is distributed across proces-
sors. Here Mp is the local contribution to the sum discussed in Section 2, precisely
at Step (8).

In the serial case where LAPACK is used to solve the entire first-stage system
on each processor, this operation maps directly to an Allreduce in MPI. In the
distributed case, we have two important considerations that make the distribution
problem significantly more complicated:

• Mp is too large to fit entirely in a node’s local memory.

• Every node owns different, non-contiguous elements in B00; however, all nodes
contribute to all elements.

To address the first issue, we calculate Mp in blocks of columns that fit in a
node’s local memory. Then, repeated communication operations are performed to
“globally” build B00 by blocks of columns.

For the second issue, we observe that the communication pattern required maps
closely to a Reduce scatter operation in MPI, in which a large array is “reduced”
(summed) across all processors, and then its pieces are partitioned and “scattered”
(distributed) to processors.

However, Reduce scatter requires that each processor receive a single contigu-
ous part of the send buffer. Considering the distribution of the matrix across pro-
cessors, a single contiguous column of the matrix can not be partitioned such that
the elements belonging to a given processor are in contiguous memory. Some in-
termediate steps are therefore necessary.

We first present a method to distribute the entire B00 block (“full reduce”),
followed by a method to distribute only the lower triangle of B00 (“lower triangular
reduce”). We describe these methods only for the matrix distribution corresponding
to Elemental, but a “full reduce” was also implemented for ScaLAPACK.

3.3.1. Full reduce

In order to apply LU decomposition, the entire distributed matrix must be filled
with the corresponding elements, disregarding the symmetry of the matrix. This
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is not the case for the LDLT procedure, which requires only the lower triangle
and it is twice faster. Nevertheless, we compare our LDLT factorization to LU
decomposition in Section 4, so we present the “full reduce” method that fills the
entire B00 block. This method is also a starting point for the lower triangular
procedure, described in Section 3.3.2.

Figure 4 contains a high-level description of the procedure. While it is gener-
ally straightforward, special care is needed at some points to ensure an efficient
implementation.

As mentioned above, we build the matrix in blocks of columns. The size of
the blocks is governed by the parameter b. This should be as large as possible
to maximize the communication bandwidth, given the available memory on each
node.

“Full reduce” procedure
Initialization
1. Let n be the size of B00.
2. Fix buffer size b.
3. Allocate b doubles for column buffer and b doubles for send buffer.
4. Allocate recv buffer (sufficiently large).
5. step ←− b/n
Main loop
6. For i = 0 to n− 1, step
7. endCol ←− min(i+ step− 1, n− 1)
8. Compute columns i to endCol −→ column buffer
9. Pack column buffer −→ send buffer
10. MPI Reduce scatter(send buffer) −→ recv buffer
11. Unpack recv buffer −→ local matrix storage
12. End For

Figure 4. Overall procedure for distributing the full B00 block.

The Pack step fills the send buffer for Reduce scatter. The send buffer must be
arranged such that the elements destined for a processor are in a single, contiguous
block, and the blocks must be ordered according to processor number. For fast
unpacking, we also require that inside a block, the order of elements match their
order in the local matrix storage. We have fully specified a one-to-one map between
the location of the elements in the column buffer and their location in the send
buffer, and theoretically only a permutation of the column buffer is necessary. An
in-place permutation would have poor cache performance, so we allocate a separate
array and copy the elements into their positions.

The key to streamlining this copying procedure is to avoid expensive division
and modulus operations that one would naively use to calculate the required po-
sitions of the elements. Instead, one should loop over continuous memory in the
send buffer and copy the corresponding elements of the column buffer, using only
addition operations to calculate the addresses. The following loop implicitly copies
the elements into the correct order in the send buffer: loop over each processor p in
order, and in an inner loop pick out the elements from the column buffer belong-
ing to processor p, copying them to the send buffer, in order. The offsets between
elements is known, so this inner loop may be performed just by incrementing the
counters correctly. Recall that all buffers store elements in column-major order.

Once the send buffer is filled, Reduce scatter is called. The entries are summed
across all processors, and the result is partitioned and distributed to the receive
buffers on the desired processors. We have arranged the elements so that they are
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Column Buffer

Send Buffer

Reduce ScatterPack Unpack

Local Matrix StorageRecv Buffer

Figure 5. Illustration of a step of the “full reduce” procedure. The 3rd and 4th columns are sent of a
10× 10 B00 block on a 2× 2 processor grid. Note that the local storage contains more rows and columns
than displayed; only the elements belonging to B00 are shown. Dashed lines indicate communication from
other processes. In general, processors will receive more than one column, unlike shown here.

in the correct order for unpacking, so this step is straightforward. Note that we
cannot use the local storage directly as the receive buffer, because the local storage
has additional rows for the rest of the distributed matrix.

3.3.2. Lower triangular reduce

For the LDLT factorization procedure, we would be performing unnecessary
work by distributing the entire symmetric B00 block, when only the lower triangle
is required. Also, in initial experiments we noticed that the communication in the
reduce step can take a significant amount of time. Therefore, we set out to design
a “lower triangular reduce” that should take nearly exactly half the time of the
“full reduce” procedure above, excluding computing the columns. We arrived at a
procedure that can effectively guarantee requiring only half of the communication
time, with little extra overhead.

With this goal in mind, we must fix the size b of the send buffer as above and
design a procedure that calls Reduce scatter half the number of times. We need
to send only half the number of elements, so this is certainly possible. In a more
naive approach, one might be led to loop over fixed-sized blocks of columns as
before and send only the lower triangular elements. This approach cannot deliver
the performance desired, because it results in the same number of Reduce scatter

calls as before and so does not decrease the communication overhead.
The solution for a fixed send buffer size is to vary the number of columns calcu-

lated in each iteration, taking exactly as many as whose lower triangular elements
fit in the send buffer. This number will increase with each iteration. We may count
the lower triangular elements as follows. Let n be the size of the B00 block. Then
the block of columns starting at column s and ending at column e − 1 (inclusive,
zero indexed) has the following number of elements:

e−1∑
i=s

(n− i) = −1

2
e2 +

(
n+

1

2

)
e+

1

2
s2 −

(
n+

1

2

)
s =: f(e;n, s). (23)

At each iteration, n and s are fixed, and the problem is to find the largest integer
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e satisfying f(e;n, s) ≤ b and e ≤ n. This is an easy and inexpensive calculation,
given that f(e;n, s) is quadratic.

Besides varying the number of columns at each iteration, the overall procedure
is the same as in Figure 4. The Pack and Unpack operations require a small
overhead in addressing, but only in calculating offsets. Instead of describing these
in detail, we provide an illustration in Figure 6, which indicates the operations
required.

Column Buffer

Send Buffer

Reduce ScatterPack Unpack

Local Matrix StorageRecv Buffer

Figure 6. Illustration of a step of the “lower triangular reduce” procedure. The 3rd and 4th columns are
sent of a 10× 10 B00 block on a 2× 2 processor grid. Note that the local storage contains more rows and
columns than displayed; only the elements belonging to B00 are shown, and the lower triangular elements
are indicated. Dashed lines indicate communication from other processes. Dots indicate the partitions of
the column-major send buffer. In the illustrated case, only two columns fit in the send buffer. Note that
in general, not all processors will receive an equal number of elements, because of the properties of the
matrix distribution.

4. Numerical experiments

Numerical experiments were performed on the Fusion cluster at Argonne National
Laboratory. Each node has 36 GB of RAM and dual quad-core Intel Xeon 2.53 Ghz
CPUs, for a total of 8 cores per node. In further discussion, we treat each core itself
as a node or processor with its own local memory. The cluster has an Infiniband
interconnect. A storage blocksize of 32 is used for ScaLAPACK and an algorithmic
blocksize of 96 is used for Elemental, optimized respectively by empirical observa-
tion. Additionally, 250 MB is used for buffers during the reduce stage.

We first describe the test problem and then present strong and weak scaling
results.

4.1. The test problem

We use a formulation of the stochastic unit commitment problem with wind power
generation in the tests for PIPS. For brevity, we do not present the full model; in-
stead, we provide an overview of the problem and the terminology used to describe
it, and we direct the interested reader to [8] for a complete presentation.
Unit commitment refers to committing power generation units to either produce

electricity or remain idle. In our problem there are two types of power units: thermal
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power plants using fossil fuels and wind farms using renewable energy. The thermal
power generation units are costly to operate, both economically and environmen-
tally. Hence, they should not be operating in large excess of demand. Each unit has
startup, shutdown, and running costs and cannot change state instantaneously.

The stochastic component arises from considering electricity produced by wind
farms, which is highly variable. The optimization problem is to minimize opera-
tion costs subject to satisfying the demand with some safety margin. Solving such
problems, we may realize the economic and environmental benefits of wind power
while ensuring that it is safely integrated with the power grid.

Each scenario is a possible realization of weather patterns, which corresponds
to a different amount of electricity produced by the wind farms. These scenar-
ios are generated by simulation using the state-of-the-art Weather Research and
Forecast (WRF) model. In the formulation proposed by [8], this is a two-stage
stochastic mixed-integer linear program with recourse, and the problem is solved
over a 24-hour timeframe with a recourse stage to reallocate units at the end of
the period. The problem solved by PIPS has one (large) simplification: the mixed-
integer problem is relaxed to a continuous problem. This can be considered as the
root relaxation problem in a branch-and-bound framework. However, the problems
solved are realistically sized, in both the number of variables and the number of
second-stage scenarios.

Problems of various sizes that are used in the experiments of this section are
obtained by replicating a (small) real-life unit commitment problem (10 thermal
units, 12 wind farms) set up for the state of Illinois [8]. We were forced to do this
because of the lack of data for a larger area. We mention that our implementation
is not tuned to take advantage of any special structure that may be introduced by
replications.

4.2. Solvers

We compare here the first-stage factorization times for the three solvers tested:
LU with ScaLAPACK, LU with Elemental, and LDLT with Elemental. A fixed
problem size of 300 thermal units is used, and we vary the number of processors
used by PIPS. The Q block of C is of size 23,436, and the A block has 1,224 rows.
This is not an especially large first-stage problem, and so we would expect the
solver to be less efficient with a larger number of processors. To verify this, we
include cases where only a subset of the processors is used for factoring the matrix.
See Table 1.

Table 1. Factorization times. In some cases, a subset of the total CPUs is used for the factorization. (S) indicates

ScaLAPACK and (E) indicates Elemental. The LDLT factorization is performed with Elemental. Values are

averages over 5 iterations. There was insufficient memory to run with 32 processors.

# Procs. Factor (sec)
# Factoring LU (S) LU (E) LDLT

32 32 * * *
64 64 55.14 89.18 29.94
256 256 15.63 17.68 9.78
1024 256 22.34 25.54 11.48

1024 16.59 20.04 6.71
2048 256 35.20 42.48 16.86

1024 31.25 41.43 10.81
2048 38.45 56.19 14.08
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In all cases, the LDLT factorization is the fastest, and in many cases it takes
less than half of the best LU time. We note that ScaLAPACK LU times are better
than Elemental LU times. This was a surprising result, given Elemental’s claims
of improved performance. After discussions with the author, we concluded that
the poor performance is most likely related to the characteristics of the Fusion
cluster. Elemental makes liberal use of advanced MPI collective operations, while
ScaLAPACK primarily uses broadcast operations. This communication pattern
may be relatively more efficient on Fusion, whose interconnect is not designed for
all-to-all communications. In spite of this issue, the LDLT factorization, which uses
Elemental, does deliver the expected 2x increase in performance over even the LU
solver in ScaLAPACK.

We observe that 1024 processors appears to be an optimal number for this prob-
lem size; this is clear in the case of 2048 total processors, where factorization time
decreases from 256 to 1,024 and increases from 1,024 to 2,048 for all solvers. It is
curious that factorization times appear to worsen for a fixed number of factoring
processors when the total number of processors is increased. We did not have the
opportunity to fully investigate this result.

4.3. Reduce

As the reader will later see, the factorization times above are small compared to
the total execution time. In fact, the reduce times are generally more significant.
The performance of the “full reduce” procedure is generally independent of the
ScaLAPACK or Elemental matrix distribution, with most of the time spent in the
Reduce scatter step. Therefore, the benefit of ScaLAPACK is minor, and only
when we compare between LU factorizations. For simplicity and because of a lack
of CPU time allocation, from this point on we present strong scaling results only
from Elemental. We will further justify this decision in Section 4.4.

The times for the full and lower triangular reduce operations are compared in
Table 2. In all cases, the lower triangular reduce takes about half the time. Note that
these times are bigger than the factorization times themselves. Also, reducing onto
a subset of processors is slower than reducing onto all processors, because of the
load imbalance that arises from the uneven communication costs. This slowdown
appears to be greater than the possible improvement in factorization time.

Table 2. Time spent assembling Q block of the distributed matrix, excluding calculating the columns. The

operation involves summing contributions from all processors to each of the 549,246,096 elements, and scattering

the elements to their required place in the distributed matrix. Values are averages over 5 iterations. There was

insufficient memory to run with 32 cores(4 nodes).

# Procs. Reduce (sec)
# Factoring LU LDLT

32 32 * *
64 64 28.31 12.96
256 256 37.55 17.18
1024 256 110.45 45.21

1024 54.32 26.35
2048 256 167.73 89.50

1024 100.40 50.80
2048 82.41 43.93

The reduction step presents a difficulty for strong scaling. With a fixed problem
size, the reduce time increases with the number of processors. This result can
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be explained easily by an increase in communication overhead. Because the lower
triangular reduce grows more slowly than the full reduce in absolute terms, we will
see that in addition to being faster, the lower triangular reduce also provides the
best strong scaling results.

4.4. Strong scaling

For the fixed problem size chosen (300 thermal units), the “backsolve” procedure
to generate the columns of the terms in the sum of the Q block (17) takes approx-
imately 140 seconds per scenario, independently of the total number of processors.
This itself is large compared to the reduction and factorization steps, which are
the only significant operations that are not “embarrassingly parallel”. With 4,096
scenarios, we would expect very good strong scaling until the point where each
processor is assigned a very small number of scenarios. This is the exact behavior
we observed. The results are reported in Table 3.

Table 3. Total wall time for 5 interior-point iterations, with a fixed problem size with 4,096 scenarios, divided

evenly across processors. All processors are used for factoring. Elemental is used for both LU and LDLT . The

execution time for 64 processors is used as the baseline, and we calculate speedup and efficiency.

Procs. Tot. Walltime Speedup Peak Mem.
(min) (Efficiency) (MB per node)

LU LDLT LU LDLT

64 759.01 735.37 64 64 1818
(100%) (100%)

256 195.62 193.12 248.3 243.7 770
(97.0%) (95.2%)

1024 55.76 50.99 871.1 922.9 533
(85.1%) (90.1%)

2048 37.9 30.48 1282.05 1534.9 523
(62.6%) (75.4%)

The LDLT solver has the best strong scaling, primarily because of the smaller
increases in reduce times. We observe very good scaling (90%) up to 1024 pro-
cessors, where each processor is assigned four scenarios. Scaling degrades to 75%
efficiency with 2048 processors, where each processor is assigned only two scenar-
ios, and the reduction and factorization steps become more significant. The peak
memory usage per node decreases with the number of processors because the size
of the local matrix storage decreases and fewer scenarios are assigned. Note that
memory usage includes the fixed 250 MB used during the reduce step.

Currently, the number of processors is limited by the total number of scenarios.
This is not an unreasonable limitation, given that the computational difficulty
with SAA problems generally arises from the large number of scenarios. Splitting
scenarios across processors is a possibility, and could be accomplished by using
parallel sparse libraries to perform the linear algebra in the second-stage.

Earlier we disregarded ScaLAPACK, claiming that the benefit over Elemental’s
LU solver is insignificant. We now substantiate that claim. For 1,024 processors,
the difference in factor times was about 3.5 seconds (20.04 versus 16.59). Recalling
that the reduction process is the same, over five iterations, this amounts to about a
17.5 second difference in total execution time. This is, in fact, not very significant
compared to the 5 minute difference between LU full reduce and LDLT lower
triangular reduce.
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Figure 7. Plot of strong scaling results. See Table 3 for numerical values.

4.5. Weak scaling

Strong scaling is more difficult on smaller problems, and so above we used a rela-
tively small first-stage matrix with size 24,660. By itself, this matrix requires about
4.5 GB to store, which does not exceed the capabilities of a modern computer; in
the tests above, most of the memory on each node was in fact used to store the
data associated with the scenarios. Here, we present weak scaling results, solving
larger problems with a fixed number of processors. We solve the unit commitment
problem described earlier, now with 640 and 1,000 thermal units on a fixed 1,024
processors with 4,096 scenarios. Table 4 contains the reduce and factorization time,
and Table 5 contains the average iteration times. Because of the very large CPU
time requirements, we ran three interior-point iterations for 640 and 1,000 thermal
units (with 5 iterations for 300); for ScaLAPACK we can present only factorization
times.

Table 4. Factorization and reduce times: 1,024 processors with all used for factorization, 4,096 scenarios. (S)

indicates ScaLAPACK and (E) indicates Elemental.

Thermal 1st Stage Size Factor (Sec.) Reduce (Sec.)
Units (Q+A) LU(S) LU(E) LDLT LU LDLT

300 23436+1224 16.59 20.04 6.71 54.32 26.35
640 49956+2584 60.67 83.24 36.77 256.95 128.59
1000 78030+4024 173.67 263.53 90.82 565.36 248.22

Table 5. Average iteration times and “backsolve” times per second-stage scenario: 1,024 processors with all used

for factorization; 4,096 scenarios. Elemental used for LU .

Thermal Total Variables Per Scenario Min./Iter. Peak Mem.
Units Vars. Sec. LU LDLT (MB per node)

300 57,677,508 14,076 139.55 11.15 10.19 533
640 121,764,108 29,716 689.35 53.49 50.44 722
1000 189,620,508 46,276 1711.29 132.72 122.74 954

Both the factorization and reduce times for LDLT continue to be about half
of the times for LU . These are promising weak scaling results. The reduce times
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scale quadratically with the size of the Q block, since the operation is a function
of the number of elements. The factorization time should scale with the cube of
the size of the first-stage matrix; but as the matrix size increases, the factorization
routines become more efficient, and so we observe less than cubic scaling at these
problem sizes. The matrix of the largest problem has a size of over 82,000, which
would take approximately 50 GB to store, and the LDLT routine factors it in only
90 seconds. This translates to over two teraFLOPS of performance (20% of peak).
Large matrices that would be very difficult, if not impossible, to solve in serial
present no problem to solve efficiently in parallel.

None of these problems could have been solved previously by PIPS using LA-
PACK to factor the dense matrices. Problems of this size are real-life problems.
For example, 1,000 thermal units and 1,200 wind farms covers the entire Midwest
region of the United States. To our knowledge, SAA problems with nearly 80,000
first-stage variables have not been previously solved.

5. Conclusions and future work

We presented a specialized LDLT factorization procedure for solving dense saddle-
point linear systems in parallel. In numerical experiments, this procedure obtains
the desired 2x increase in performance over a general LU factorization. Our fac-
torization applies to an entire class of saddle-point systems and requires only five
lines of C++ code to implement using an actively maintained parallel dense lin-
ear algebra library, Elemental. Currently, it is the only such procedure available.
For saddle-point systems, it is likely more efficient than general parallel dense
symmetric-indefinite solvers, if any are implemented in the future, because no com-
parisons or pivoting is required. The procedure scales well to very large systems,
and performance will improve with improvements in the Elemental core.

We also presented an efficient method to assemble the matrix in the context of a
parallel solver for two-stage stochastic optimization problems with recourse using
the SAA approach. These problems are highly parallelizable by distributing the
calculation for the second stage scenarios, but one must also solve a large dense
linear system in the first stage variables. This work demonstrated how to parallelize
solving this system as well. The overhead of parallelization arises in the assembly
phase of the matrix, and we were able to reduce this cost by half by assembling
only the lower triangle, significantly increasing the strong scaling efficiency. The
communication overhead would likely be greatly reduced on a system with tightly
coupled nodes and a dedicated collectives network, such as the Blue Gene/P at
Argonne National Laboratory. We intend to test PIPS on this system as well as
investigate efficient hybrid programming approaches (MPI plus shared-memory
parallelization), which have become increasingly important for current and next-
generation high performance computing.

By parallelizing the dense factorization, we removed the memory usage bottle-
neck that prevented PIPS from solving problems with a large number of first-stage
variables. Now, PIPS is capable of solving very large real-life problems. This is an
important problem for the integration of wind-generated power with the electricity
grid, and this work is a necessary step forward in order to be able to solve it and
similarly sized large-scale stochastic optimization problems.
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