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costly when applying second-order methods for nonlinear optimization. In this work, we dis-
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Hessians to avoid the use of hash tables and analyze the space and time complexity of EP
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1. Introduction

We focus on the problem of efficient automatic computation of sparse Hessian matrices.
The edge pushing (EP) algorithm was introduced in [1] as an alternative to popular
coloring-based compression algorithms [2]. Recent work by Wang et al. [3] has refined
the algorithm and corrected issues with its initial implementation. However, to the best
of our knowledge the EP algorithm is not yet available in any off-the-shelf automatic
differentiation (AD) package.

Here we report our experiences implementing the EP algorithm within JuMP [4], an
algebraic modeling language for optimization. JuMP currently implements the coloring-
based algorithms for Hessian computations, and in recent benchmarks the computation
time was observed to be within a factor of 2.2 of AMPL, a commercial software pack-
age with similar functionality to JuMP. Our motivation for experimenting with the EP
algorithm is to potentially further close this performance gap.

Note that, in the context of optimization, we are primarily interested in the case of
repeated Hessian evaluations using the same sparsity pattern. In contrast, many of the
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reported gains of the EP algorithm over coloring approaches are due to the expense of
the coloring step, which can be amortized over many Hessian evaluations. As Wang et
al. [3] state:

For repeated Hessian computation when the sparsity pattern remains the same, the
compression-based approach should be preferred over LIVARH or LIVARHACC,

where LIVARH and LIVARHACC are two variants of the EP algorithm. We would like to
identify cases where the EP algorithm is superior, even, perhaps, after amortizing the
cost of the coloring step.

Our initial implementation following [3] had notable performance issues due to the use
of hash tables throughout the algorithm. We will describe an improved data structure
we designed to implement the EP algorithm using fast O(1) lookups with fewer memory
indirections. This is achieved by using a storage scheme for the Hessian similar to the
compressed sparse column (CSC) storage, but allowing replicated entries. We analyze
the EP algorithm equipped with the proposed data structure to bound the worst-case
growth in the number of replicated entries and rule out the possibility of excessive space
complexity that would prevent using the EP implementation for large-scale Hessians.

This proposed data structure yielded a drastic improvement, by as much as a factor
of ten, in performance over our initial implementation; it has also revealed optimization
instances where the EP algorithm is indeed superior or competitive with coloring ap-
proaches. While some of the slowness of hash tables may be attributed to their current
implementation in the Julia language, we believe that our new data structures could
yield improvements in implementations in other languages as well.

2. Preliminaries: The edge-pushing algorithm

We consider twice continuously differentiable scalar functions f : Rn → R that can be
represented by a finite sequence of elementary functions φ1, φ2, . . . , φl. The elementary
functions are arithmetic operators or elementary mathematical functions, and each ele-
mentary function φi is a function of only previous functions φj defined in the sequence
(i.e. 1 ≤ j < i). For example, such representations in terms of elementary functions
occur naturally in the process of programming f as a computer routine. We follow the
notation of Griewank and Walther [5] and denote by vl−n, v2−n, . . . , v0 the independent
variables or the arguments of f . Furthermore, whenever φi for i ∈ {1, 2, . . . , l} is used
as an argument to another elementary function, we will call it a dependent variable and
denote it with vi. This is needed to distinguish between the dual role of “argument” and
“function” that the elementary functions φi have. Also, by vj ≺ vi we mean that vj is
an argument of φi, or that vj precedes vi, where necessarily l − n ≤ j < i ≤ l. The
interdependences between the variables can be expressed by means of a directed acyclic
graph, known as the computational graph (CG) of f , with the nodes representing the
variables and the vertices representing the precedence relations [3].

The edge pushing (EP) algorithm introduced by Gower and Mello [1] and refined by
Wang et al. [3] is an alternative to the popular coloring algorithms [2, 6–8] for efficient
computation of sparse Hessians. Coloring algorithms for Hessian (H) evaluation work
by computing the directional derivatives in the form of Hessian-vector products ∇2f · d,
and they reduce the number of directions d needed by solving a graph coloring problem
such as [2]. The graph coloring problem is NP-hard and is usually solved by specialized
heuristics such as [8]. The coloring approach has two potential drawbacks: (i) the cost of
the graph coloring heuristic algorithm can be unreasonably high, and/or (ii) the number
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of colors needed, in either the heuristic solution or the true minimal solution, may be
excessively large, leading to a large number of Hessian-vector products. In Section 4 we
show instances of optimization problems for both (i) and (ii) apply.

The edge pushing algorithm takes a different approach. It applies the chain rule at
each node in the computational graph and uses a Hessian graph model that augments
the computational graph with new edges that track dependences of the gradients (adjoint
variables) on the variables, or carry second-order partial derivatives between the variables
with nonlinear relationships. This Hessian graph model can be simplified to remove
symmetric redundancies [1, 3] and to derive a componentwise, recursive expression for
each (k, j) Hessian entries that is not zero [3]. The recursive expression makes use of the
live variable sets Si (i = {1, . . . , l}), which track the nonlinear relationships between the
variables and are defined recursively by Sl+1 = ∅ and

Si = {Si+1\{i}} ∪ {j|vj ≺ vi}, i ∈ {1, . . . , l}. (1)

The live variables sets allow the derivation of a recursive expression [3] for each Hessian
entry of the form

∀i ∈ {1, . . . , l}, ∀(k, j) ∈ Si × Si,

h
(i)
kj = h

(i+1)
kj +

∂φi
∂vj

h
(i+1)
ik +

∂φi
∂vk

h
(i+1)
ij +

∂φi
∂vj

∂φi
∂vk

h
(i+1)
ii + v̄i

∂2φi
∂vj∂vk

. (2)

Here we denote the intermediate Hessians entries by h(i) ∈ R(n+l)×(n+l). The final Hessian
H ∈ R(n+l)×(n+l), where entry Hkj is the partial second-order derivative with respect to

vj and vk, is given by h(1) [3]. The adjoint variable v̄i is computed during the reverse
sweep computation of the gradient.

3. A variant of the Hessian edge-pushing algorithm

Numerical EP algorithms [1, 3] require frequent random access to (or lookup for) the
entries of intermediate Hessians h(i) as required by the recursion (2). Since we target very
large (but sparse) problems, the Hessian matrices need to be a stored in a data structure
with low space complexity that takes advantage of the sparsity. Reducing space usually
competes with the time complexity of random access, even though it does not necessarily
have to do so. In this work we propose a data structure for the Hessian computation
decribed by (2) similar to the compressed sparse column (CSC) storage, but allowing
duplicate entries, whose sum is the value of the Hessian entry. The goal is to reduce
the memory indirection overhead in the EP algorithm associated with the access to the
Hessian entries in (2).

The idea of using duplicate entries comes from the observation that the Hessian re-
cursion (2) can be manipulated to use set-valued Hessian entries. We will denote the

set-valued entry (k, j) at step i in the recursion (or EP algorithm iteration) by H
(i)
kj .

Based on the precedence relationship of k and j with respect to step i, similarily to [3],
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(2) can be used to write

∀i = {l, . . . , 1}, ∀(j, k) ∈ Si × Si, H(l+1)
jk = ∅ and

H
(i)
jk =



H
(i+1)
jk vj 6≺ vi, vk 6≺ vi{
∂φi

∂vj
· h : h ∈ H(i+1)

ik

}
, vj ≺ vi, vk 6≺ vi,{

∂φi

∂vj
h : h ∈ H(i+1)

ik

}
∪
{
∂φi

∂vk
h : h ∈ H(i+1)

ij

}
∪
{
∂φi

∂vj
∂φi

∂vk
· h : h ∈ H(i+1)

ii

}
∪
{
v̄i · ∂2φi

∂vj∂vk

}
, vj ≺ vi, vk ≺ vi.

(3)

These set-valued entries H
(i+1)
jk store the terms that contribute to (j, k) entry when

visiting the live sets corresponding to node i. Our variant of the EP algorithm updates the

set-valued entries H
(i)
jk according to the recursion (3) at the benefit of O(1) access time

for each of the (duplicate) entry. This is discussed in detail below, in Section 3.1. When

comparing our modification to the similar recursion used by Wang et al. [3] that gives h
(i)
jk

from (2), one can easily see that h
(i)
jk =

∑
h∈H(i)

jk
h, and, consequently, the entry (k, j) in

the Hessian will be Hjk =
∑

h∈H(1)
jk
h. The resulting variant of the edge-pushing algorithm

is very similar to the original edge-pushing algorithm [1] and is listed in Algorithm 1.
In Algorithm 1 we denote by H{jk} the set containing the replications corresponding to
entries (j, k) and (k, j) during the algorithm and H{jk} and H{kj} refers to the same set.
Due to this “symmetric” notation, the update in (Push3) is slightly different than in (3)
and it follows [1]. Also, for compactness, in Algorithm 1 we do not check whether the
partials derivatives are zero; in the implementation, the entries corresponding to such
partials are not appended.

3.1 The data structure for the Hessian

The edge-pushing algorithm described above allows us to store the intermediary Hessians
using CSC storage with duplicate entries. More specifically, we use a vector of n + l
vectors, where the ith inner vector contains pairs (row, value) corresponding to entries
on column i, possibly with multiple pairs for the same entry as required by the use of
set-valued entries in (3). With this data structure, the iteration over the edges that may
need to be pushed when sweeping node i—namely, the for in line 2 in Algorithm 1—is
done by looping over the inner vector corresponding to column i, which contain all p
such that W{pi} 6= ∅. In other words, accessing W{pi} for a given p is done in O(1) time.
The update of H{jk} in (Push1), (Push2), (Push3), or (Create) is done by appending
the corresponding pair (k, value) pair to the jth inner vector (j > k), which also has
constant O(1) time. This is possible because we perform an initial “preprocessing” sweep
in which we compute the sizes of each inner vector and preallocate them.

In essence, accessing and updating the Hessian graph model is done in O(1) when using
the set-valued CSC data structure. This is a significant departure from previous edge-
pushing implementations, which use either an adjacency list with access time linear in
the degree of i in the Hessian graph model [1], or std::map which has logarithmic access
complexity [3]. The downside of our approach is a potential increase in the number of
elements of the set-valued Hessian entries, which results in an increased number of loops
in the for loop in line 2, and an increase in space complexity. We discuss this trade-off
in more detail in the next section.
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Algorithm 1 Proposed variant of edge pushing that uses set-valued Hessian entries

Input: tape T
Initialization: v̄1−n = · · · = v̄l−1 = 0, v̄l = 1, H{ij} = ∅, 1− n ≤ j ≤ i ≤ l
1: for i = l, . . . , 1 do
2: for p such that p ≤ i and H{pi} 6= ∅ do
3: (pushing step)
4: if p 6= i then
5: for j ≺ i do
6: if j = p then

7: H{pp} = H{pp} ∪
{

2∂φi

∂vp
h : h ∈ H{pi}

}
(Push3)

8: else
9: H{jp} = H{jp} ∪

{
∂φi

∂vj
h : h ∈ H{pi}

}
(Push1)

10: end if
11: end for
12: else p = i
13: for each unordered pair {j, k} such that j, k ≺ i do
14: H{jk} = H{jk} ∪

{
∂φi

∂vk
∂φi

∂vj
h : h ∈ H{ii}

}
(Push2)

15: end for
16: end if
17: end for
18: (creating step)
19: for each unordered pair {j, k}, such that j, k ≺ i do
20: H{jk} = H{jk} ∪

{
v̄i

∂2φi

∂vk∂vj

}
(Create)

21: end for
22: (adjoint step)
23: for j ≺ i do
24: v̄j+ = v̄i

∂φi

∂vj
25: end for
26: end for

An alternative approach for a Julia implementation could use vectors of dictionaries
(one dictionary for each row), which can theoretically provide O(1) access time without
needing to replicate Hessian entries. We have tried this approach and discovered that
performs considerably worse than the CSC data structure, very likely because of the
overhead associated with hashing.

At the end of the algorithm, the entries corresponding to the independent variables are
summed to obtain the Hessian. The complexity of this final step is linear in the number
of entries corresponding to the independent variables when the accumulation is done in
a separate buffer, usually provided by the optimization solver.

3.2 Complexity analysis

Allowing for repeated Hessian entries is a considerable departure from previous imple-
mentations of the edge pushing algorithm, and can potentially limit real-world applica-
tions of the algorithm for large problems because of high space and memory requirements.
We first discuss the space complexity, namely the growth in cardinality of the set-valued
Hessian entries. The “push” and “create” operations in the algorithm depend on the
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computational graph and the nonlinearity of the dependent nodes with respect to their
predecessors in the computational graph. Nonlinearity refers to whether the partials in
the four updates of Algorithm 1 are nonzero. We will work under the very conservative
assumption that all the dependent variables are nonlinear with respect to their predeces-
sors. As a result, our worst-case estimate of the space complexity (and time complexity)
holds for rather isolated, “corner” cases.

We derive the the maximum growth in the cardinality of the (j, k) entry during Algo-
rithm 1 for any given pair of nodes j and k. For this we consider four cases, depending on
whether j and k are dependent of independent nodes: (i) j, k ≥ 1, (ii) j ≥ 1 and k < 1,

(iii) j < 1 and k ≥ 1, and (iv) j, k < 1. In what follows, we denote by c
(i)
jk the cardinality

of H
(i)
jk and by s(j) the number of successors i � j of j. For compactness we use j ≺ i

for vj ≺ vi and also use i � j and j ≺ i interchangeably.
Case (i): j, k ≥ 1. We first remark that the subgraph of the expression’s computation
graph that correspond to the dependent nodes is a tree, i.e., any dependent node has

only one successor (or parent). Also note that, according to (3), H
(i)
jk can only be updated

when sweeping nodes i such that j ≺ i .

When k 6≺ i then c
(i)
jk = c

(i+1)
ik according to the second branch in (3). Furthermore,

H
(i+1)
ik can only be updated when sweeping the (unique) successor i1 of i, namely

c
(i)
jk = c

(i+1)
ik = c

(i1)
i1k
, where i1 � i. (4)

When k ≺ i, the third branch in (3) indicates that c
(i)
jk is at (most) c

(i+1)
ik + c

(i+1)
ij +

c
(i+1)
ii + 1.

We claim that c
(i+1)
ik = c

(i+1)
ij = 0. To prove this, observe that c

(i+1)
ik = c

(i1)
i1k

where

i1 � i; also, c
(i1)
i1k

does not grow when sweeping i1 because k 6≺ i1 since k’s only successor

is i 6= i1. Following the same argument we obtain that c
(i+1)
ik = c

(i1)
i1k

= . . . = c
(l)
lk = 0.

Similarily one can prove that c
(i+1)
ij = 0.

In conclusion, we have that that c
(i)
jk ≤ c

(i+1)
ii + 1 when k ≺ i. Since c

(i+1)
ii can only be

updated at the successor i1 of i, we can also write

c
(i)
jk ≤ c

(i1)
ii + 1, where i1 � i. (5)

The growth equations (4) and (5) indicate that when j and k are dependent nodes,
the cardinality of (j, k) entry grows by at most one only when the nodes on the (unique)

path from i � j to l are swept. Therefore, c
(1)
jk is at most the length of the path from i

to l, which we denote by α(i). With this notation we can write

c
(1)
jk ≤ α(i), where i � j. (6)

On average α(i) = log(l), which indicates a modest growth in the size of the (j, k) entry
for dependent nodes j and k.
Case (ii): j ≥ 1 and k < 1. There can be only one update in (3), at node i � j
since j ≥ 1 has only one successor. If the update occurs in the second branch (k 6≺ i),

then c
(i)
jk = c

(i+1)
ik = c

(i1)
ik , with the last equality given by the fact that (i, k) can be only

updated at i1 � i.
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We bound c
(i1)
ik . First note that c

(i1)
ik is either c

(i1+1)
i1k

or c
(i1+1)
i1k

+ c
(i1+1)
i1i

+ c
(i1+1)
i1i1

+ 1
accordingly to (3), for when k 6≺ i1 and k ≺ i1, respectively. As in Case (i), one can prove

that c
(i1+1)
i1i

= 0. Also, c
(i1+1)
i1i1

≤ αi1 by (6). As a result, the cases of both k 6≺ i1 and

k ≺ i1 have a common bound c
(i1)
i1k
≤ c(i1+1)

i1k
+α(i1) + 1 = c

(i2)
i1k

+α(i1) + 1, where i2 � i1.
This last result shows that the bound can grow by at most by 1 + α(p) at the nodes p
of the (unique) path from i1 to l for which k ≺ p. Assuming the conservative situation
that k is a predecessor of all such nodes, we obtain that

c
(1)
jk ≤ s(k)(1 + α). (7)

The conservative situation corresponds to functions that have the indepen-
dent variable k nested inside nonlinear operators, for example f(v−n, . . . , v0) =
vk op f1(vk op f2(vk, . . .), . . .).

If the update of H
(i)
jk occurs in the third branch (k ≺ i), then c

(i)
jk is at most c

(i+1)
ik +

c
(i+1)
ij + c

(i+1)
ii + 1. By the same reasoning used for (7), the first term can be bounded by

s(k)(1 + α). As in Case (i), since j ≺ i, the second term is zero; also, the third term is
at most α(i) by (6). Therefore

c
(1)
jk ≤ s(k)(1 + α) + α(i) + 1 ≤ (s(k) + 1)(1 + α). (8)

Since bound in (8) is larger than the bound in (7), (8) is the worst-case bound for Case
(ii).
Case (iii): j < 1 and k ≥ 1. Note that j can have multiple successors and the (j, k)
entry can be potentially updated every time when a successor of j is swept.

We consider first the second branch in (3), that is k 6≺ i. For this case we observe that

c
(i)
jk = c

(i+1)
ik ≤ α(i), with the last equality given by (6). The maximum growth is obtained

by summing over all successors of j, namely c
(1)
jk ≤

∑
i:j≺i α(i). Let α = max{α(i) : i =

1, . . . , l}. Then we have c
(1)
jk ≤ αs(j).

For the third branch of (3), that is k ≺ i, we observe that the update happens only

once since k has only one successor. Consequently, c
(i)
jk = c

(i+1)
ik + c

(i+1)
ij + c

(i+1)
ii + 1. Note

that c
(i+1)
ik = 0 since k is an dependent node and k ≺ i (see Case (i)) and c

(i+1)
ii = α(i1)

based on (6). Hence, c
(i)
jk ≤ c

(i+1)
ij +α(i1) + 1 = c

(i1)
ij +α(i1) + 1. Applying this argument

recursively, one can obtain, similarly to (8), that

c
(1)
jk ≤ (s(j) + 1)(1 + α) (9)

As in Case (ii), the bound is attained for functions that have the independent variable
j nested inside nonlinear operators. The bound given by (9) for the case k ≺ i is larger
than the bound obtained for the case k 6≺ i and can be used as a worst-case bound for
Case (iii).
Case (iv): j, k < 1. Let us first denote by s(j, k) the number of common successors of
j and k.

In (3), there can be at most s(j)− s(j, k) updates on the second branch and at most
s(j, k) updates on the third branch. Consequently, based on the bounds obtained in Cases
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(i), (ii), and (iii) we see that

c
(1)
jk ≤ (s(j)− s(j, k))s(k)(1 + α) + s(j, k) [s(k)(1 + α) + s(j)(1 + α) + α+ 1]

= (s(j)s(k) + s(j, k)s(j)) (1 + α) + s(j, k)(1 + α) (10)

According to (6), (8), (9), and (10), the growth in the size of each of set-valued entries
(j, k) of the Hessian is modest, being bounded by the product of a quadratic or linear
term in the number of the successors of j and k and the “height” of the tree subgraph
of the computational graph formed by the dependent nodes. The modest growth in the
Hessian entries was initially counterintuitive to us, because at first glance Algorithm 1
seems to indicate that the size of the Hessian entry grows as a geometric series.

Note that this growth estimate is in terms of the computational graph, not in terms
of the Hessian graph model; however, it is derived under the assumption that all the
relationships between the nodes in the computational graph are nonlinear, which makes
it very conservative.

We observe that the time complexity of computing entry (j, k) equals the space com-
plexity, since the access and update times are O(1). The approach used here to obtain
complexity estimates is Hessian entry-centric and is different from the analysis in previ-
ous work ([1] and [3]), which is iteration-centric. In Gower and Mello [1], the time analyis
is also expressed in terms of the (final) Hessian graph model; in Wang et al. [3] the anal-
ysis uses a measure of the nonlinear interactions between variables. For these reasons a
direct comparison of our estimate with previous work is difficult. We remark that the
complexity estimate of Wang et al. [3] is for the number of “create” and “push” steps and
does not include a log term that comes from use of std::map. Also, the estimates of Gower
and Mello [1] assume the use adjacency lists that require certain ordering on indexes of
variables to obtain the stated complexity; such ordering does not necessarily occur in
their ADOL-C implementation (reported to not work correctly by Wang et al. [3]).

3.3 Implementation details

We use a tape representation for the computational graph that is based on the Julia
Vector type. This array-based tape implementation allows us to minimize the stack
memory usage when the algorithm is implemented using loops. Initially, the edge pushing
algorithm perform a sweep of the computational graph to count the number of elements
in each of the Hessian entries and then allocate the space for the data structure. This
preprocessing step is needed to avoid repeatedly growing the Julia vectors used to store
the Hessian. The Hessian data structure can then be reused for subsequent Hessian
evaluations during the optimization phase, therefore its cost, which is usually low, is
amortized over the optimization iterations.

During the performance profiling phase in our implementation we identified a number
of ways to speed up the Hessian evaluation and reduce storage requirements for real-world
problems. The implementation of a simple strategy for pruning the parameters nodes in
the Hessian graph model and an alteration of the tape structure for the specific case of AD
applied to constrained optimization problems resulted in considerable improvement (as
much as several factors) in the code performance. These two developments are presented
next.
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Figure 1.: Comparison of the edge pushing algorithm without ((a)-(c)) and with ((d)-(f))
pruning the parameter node p1 for function p1 · log(x1 · x2). Circles represent dependent
nodes, dotted squares represent parameter nodes, and solid squares represent independent
nodes. The dotted edges indicate newly created edges when sweeping a incumbent node,
which is marked with gray color. Pruning reduces the number of edges from 9 to 5.

3.3.1 Pruning the Hessian graph model

The general strategy in the edge pushing algorithm consists of visiting the computational
graph starting at the node corresponding to the final dependent variable vl and updat-
ing the Hessian graph model according to recurrence (3) by creating and pushing new
edges. These edges correspond to nonlinear relationships between the variables, which
can potentially contribute to the entries in Hessian. The “creating” step discovers new
nonlinear relationships and updates the current node’s weight accordingly; the “push-
ing” step propagates such nonlinear relationships to each of the predecessors of the the
current node and creates shortcuts edges.

For the purpose of computing zeroth- (function evaluation) and first-order (gradient)
derivatives, the parameters in the original function expression are treated as dependent
variables and appear in the computational graph (and thus in Hessian graph as well)
as regular nodes. A critical observation is that in the Hessian computation, parameters
do not influence the nonlinear relationships between the other variables. In terms of the
Hessian graph model, the edges that have at least one parameter node as endpoint do
not need to be “pushed” since they will have no second-order derivative contribution to
the final Hessian value. Similarly, in the “creating” step, the edges ending in a parameter
node are discarded. We illustrate this technique in Figure 1. This strategy of pruning
the Hessian graph can considerably reduce the number of edges in the Hessian graph
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model. The reduction in space requirements can be drastic, as much as several times,
for problems that have many parameters nodes close to the top dependent node of the
computational graph. Time savings are similar, stemming from a reduced number of
edges that needs to be pushed or created.

3.3.2 Optimization-specific developments

When used in an algebraic modeling language for optimization, the edge pushing imple-
mentation needs to provide the function and gradient evaluations individually for the
objective f and each constraint gi, i = 1, . . . ,m, which requires the tape to be built
for each of these functions. On the other hand, the algebraic modeling language does
not require the individual Hessians of f and gi; instead it require the Hessian of the
Lagrangian, which has the form

L(x) = f(x) +

m∑
i=1

λigi(x),

where the parameters λi are specific to the optimization algorithm.
In our implementation we build the tape directly for the computational graph of the

Lagrangian and keep track where the computational graph of f and each gi starts and
ends (in two arrays of size m) in the tape. Note that due to additive form of L, the tape
representations of the computational of graphs of f and gi are sequential on the tape
corresponding to L. This strategy makes it possible to evaluate f and gi, as well as their
gradients, individually as required by the algebraic modeling language; it also allows us
to compute the Hessian of the Lagrangian directly, without computing the intermediary
Hessians of the objective and constraints.

3.4 Final remarks

It is well known that Edge Pushing algorithms are designed to implicitly take advantage
of sparsity [1, 3]. To this extent, we remark that our EP variant does not alter this salient
property of EP algorithms; indeed, (3) indicates that no additional nonzero entries in the
Hessian occurs by allowing set-valued entries since these occur only for nonzero partials
derivatives, which are the same in our algorithm as in its sibling [1]. In other words, the
Hessians computed by the two algorithms are identical in terms of sparsity pattern (in
addition to having identical numerical values).

Partially separable functions [9, 10] arise in many optimization problems and proved to
improve the performance of numerical optimization algorithms [11, 12]. It is important
to remark that partial separability is exploited implicitly by the class of Edge Pushing
algorithms as the byproduct of their implicit sparsity detection combined with the fact
that that separable operators + and − are linear and, therefore, they do not introduce
nonlinear relationships among their operands during the pushing and creating steps.
This results in a separable computational graph. We illustrate this in Figure 2 for the
separable function of the form

M∑
i=1

log

(
1 +

1

exp(yi
∑N

j=1 θjxij)

)
. (11)

10
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Figure 2.: The computational graph of the separable function given by (11) for N =
2,M = 3. EP algorithms implicitly take advantage of separability by sweeping only the
subgraphs rooting in the separable operator +. Partially separable functions are similar.
Parameter nodes are represented by dashed boxes, independent nodes by solid boxes,
and dependent nodes by circles.

4. Computational experiments and performance results

We compare the performance of the edge pushing implementation with the Julia coloring-
based Hessian computation implementation from JuMP, and also with the AD of the
commercial algebraic modeling language AMPL. We report the average Hessian evalua-
tion time, denoted by “Hess.”, and the total auto differentiation time, denoted by “AD”,
over 5 optimization iterations. All the times are reported by Ipopt 3.12.5. We also record
the replication factor (rf) of the Hessian entries within our edge pushing algorithm, which
is computed as the ratio of the sum of cardinals of the set-valued Hessian entries (cor-
responding to independent nodes) and the number of nonzero elements in the Hessian.
This replication factor effectively characterizes the amount of extra memory required by
our algorithm. To ensure a fair comparison of the algorithms, we do not report coloring
times of JuMP for problems for which the coloring is trivial a priori, e.g. for arrow-head
and dense Hessians [2, 6–8, 13], even though JuMP currently uses general-purpose color-
ing methods and does not take advantage of these special structures. The preprocessing
step of our EP implementation, that is, the sweep that prealocates the Hessian data
structure, is an small fraction of the Hessian evaluation time and is not recorded. On the
other hand, the postprocessing step, which sum up the duplicate entries of each Hessian
entry in the buffer offered by the optimization solver is recorder in the Hessian evaluation
time (Hess.).

The numerical experiments and performance evaluation were performed on RedHat
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Linux machine running a Intel c© Xeon c© CPU E5-1650 v3 at 3.50GHz with 64Gb of RAM
memory. We used Julia v0.4, JuMP v0.14.2, and AMPL v20161231. Our implementation
was checked for correctness by comparing it with JuMP on several instances of each
the class of test problems; Ipopt reported identical solution and iteration convergence
metrics (within machine precision and optimization convergence criteria).

The problem classes used in the performance evaluation were chosen for the dual
purpose of (i) scrutinizing the performance of the Julia vector-based implementation
against our theoretical expectations of fast access time and modest replication factor
and (ii) comparing the performance of our EP implementation with coloring-based AD
of JuMP and state-of-the-art algebraic modeling language AMPL to assess any potential
improvement for Julia AD users. In particular, the synthetic examples of Section 4.1
and 4.2 serve primarily as testbed for the study of the dependence of the execution time
and storage on the Hessian size and on the number of nonlinear relationships among the
variables. The log-regression class of problem 4.3 are used to stress-test the proposed
Hessian data structure for dense Hessians. Finally, the power grid problems represent a
realistic testbed to evaluate the performance gap between current Julia AD capabilities
in algebraic modeling languages and state-of-the-art algebraic modeling AMPL.

4.1 Arrow-head structure

The first set of experiments are performed for functions of the form

N∑
i=1

cos

 K∑
j=1

xi+j

+

K∑
j=1

(xi + xj)
2

 , (12)

which have Hessians (of size N) with K dense bordering columns/rows, i.e., arrow-
head shaped Hessians. We perform two sets of experiments. The first, shown in Table 1,
measures the performance of the three approaches for Hessians of increasing sizes with a
fixed number of bordering columns and rows. The speed-up with N is linear for all three
approaches; edge pushing and AMPL performance is similar for both Hessian evaluation
and AD time.

For the second set of experiments, shown in Table 2, the size of the Hessian is fixed
and the bordering size is increased. The computation time of all three approaches grows
faster than linear when K is increased. In the case of edge pushing, this behavior is
caused by the increasingly large number of nonlinear relationships between variables
in (12) when K grows; as a result, the replication factor also increases with K. We note
that the replication factor grows slower than K. For this set of experiments, edge pushing
seems to match the performance of AMPL. On the other hand, JuMP’s performance for
these sets of problems is affected by the quality of coloring. We remark that coloring for
arrow-head Hessians can be improved by first computing the coloring of the submatrix
obtained by removing the border, and adding the border dense columns to this coloring.
This observation is very likely to improve JuMP’s performance.

4.2 Random sparsity structure

The second performance evaluation is performed on problems with sparse unstructured
Hessians. These problems were synthetically generated to have an arbitrary sparsity

12
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Table 1.: The performance results for arrow-head Hessians of increasing size with fixed
number of bordering columns and rows (K = 16).

Edge pushing JuMP AMPL
N K nnz rf Hess. AD Hess. AD Hess. AD

time time time time time time

2000 16 63760 5.7 0.005 0.079 0.036 0.040 0.003 0.007
4000 16 127760 5.7 0.009 0.086 0.074 0.079 0.006 0.014
8000 16 255760 5.7 0.019 0.102 0.151 0.157 0.016 0.031

16000 16 511760 5.7 0.040 0.133 0.300 0.310 0.038 0.067
32000 16 1023760 5.7 0.080 0.194 0.603 0.619 0.070 0.124
64000 16 2047760 5.7 0.158 0.318 1.229 1.229 0.157 0.263

Table 2.: The performance results for arrow-head Hessians of increasing bordering size
with function given in (12), when N = 32 000 is fixed.

Edge pushing JuMP AMPL
N K nnz rf Hess. AD Hess. AD Hess. AD

time time time time time time

32000 2 127998 2.2 0.010 0.090 0.014 0.019 0.006 0.018
32000 4 255988 2.7 0.017 0.111 0.039 0.046 0.010 0.027
32000 8 511944 3.7 0.035 0.130 0.161 0.172 0.026 0.056
32000 16 1023760 5.7 0.079 0.195 0.622 0.639 0.069 0.124
32000 32 2047008 9.7 0.236 0.389 2.091 2.124 0.177 0.280
32000 64 4091968 17.7 0.667 0.907 7.569 7.623 0.411 0.623

pattern by considering objective functions of the form

N∑
i=1

(xi − 1)2 +
∏

j∈rand seti(N,K)

xj

 . (13)

The dimension of the Hessian matrix is N , while K controls the density of the Hessian.
The random sparsity pattern is obtained by randomly generating a set rand seti(N,K)
of K unique indexes from {1, 2, . . . , N} over which the the multiplication operator is
applied. This set is generated for each term i ∈ {1, 2, . . . , N}. This strategy places nonzero
elements in each row and column of the Hessian at random positions. Additional nonzero
entries occur on the diagonal of the Hessian of (13) from the quadratic terms (xi − 1)2.

We are interested in the performance of the three AD approaches for this set of prob-
lems because the unstructured sparsity of the Hessians require the use of coloring in
JuMP. In addition, AMPL is very likely to employ its algorithm for general sparse Hes-
sian computation [14].

Tables 3 and 4 show the dimensions of the benchmark problems and the performance
results for fixed N and fixed K, respectively. For any given values of N and K, the same
random index sets rand seti(N,K) were used in comparing edge pushing, JuMP’s AD,
and AMPL. We first note from Table 4 that all three approaches show linear time depen-
dence with N for fixed K. On the other hand, when K varies and N is fixed, the number
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Table 3.: The performance results for (13) for fixed N = 4000.

Edge pushing JuMP AMPL
N K nnz rf Hess. AD Hess. AD coloring Hess. AD

time time time time time time time

4000 2 7999 1.0 0.001 0.073 0.001 0.004 0.024 0.001 0.002
4000 4 27936 1.0 0.001 0.073 0.005 0.008 0.038 0.002 0.003
4000 8 115104 1.0 0.003 0.075 0.023 0.027 0.155 0.008 0.010
4000 16 468041 1.0 0.011 0.083 0.264 0.269 1.821 0.031 0.035
4000 32 1749489 1.1 0.078 0.156 3.395 3.401 26.646 0.146 0.156
4000 64 5041468 1.6 0.572 0.670 16.576 16.587 188.558 0.591 0.608

Table 4.: The performance results for function given in (13), when fixing K = 32.

Edge pushing JuMP AMPL
N K nnz rf Hess. AD Hess. AD coloring Hess. AD

time time time time time time time

1000 32 309788 1.6 0.018 0.089 0.311 0.3156 2.440 0.027 0.029
2000 32 774325 1.2 0.037 0.112 1.154 1.158 9.838 0.049 0.053
4000 32 1749489 1.1 0.076 0.154 3.401 3.407 26.844 0.143 0.153
8000 32 3727099 1.0 0.162 0.247 7.126 7.135 65.159 0.371 0.392

16000 32 7697347 1.0 0.313 0.416 12.883 12.900 136.839 0.779 0.817

of nonzeros grows quadratically as shown in Table 3; edge pushing and AMPL running
times (both Hessian computation and total time) seem to grow quadratically with K
as shown in Table 3. We remark that the number of nonzeros also grows quadratically.
JuMP’s Hessian times seem to grow at a faster rate, which can be explained by a possible
degradation of the coloring quality as K grows (due to denser Hessians).

Edge pushing seems to outperform AMPL by as much as a factor of 2 (Table 4). This
performance gap seems to close and even disappear for problems where edge pushing’s
replication factor increases, as it can be seen in the last rows of Table 3 JuMP’s perfor-
mance appears to be significantly affected by the unstructured sparsity, for which the
coloring proves to be both expensive, and as mentioned in the previous paragraph, of
low quality.

4.3 Logistic regression models

Logistic regression is used in statistics and computer science (e.g., machine learning,
classification, natural language processing) to conduct regression analysis when the de-
pendent variable is binary. The training of the parameters (denoted by an N -dimensional
vector θ) in logistic regression is done by solving

min
θ
λ‖θ‖2 +

M∑
i=1

log
(
1 + exp

(
−yiθTxi

))
, (14)
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where {xi, yi}Mi=1 (xi ∈ RN , yi ∈ R) are the training points and λ is a constant chosen to
be inversely proportional with the covariance of the prior distribution of θ [15].

Table 5.: Performance results for logistic regression models.

Edge pushing JuMP AMPL
M N rf Hess. AD Hess. AD Hess. AD

time time time time time time

2 2000 6.0 0.033 0.105 0.067 0.070 0.004 0.004
2 4000 6.0 0.224 0.295 0.277 0.280 0.015 0.015
2 6000 6.0 1.119 1.192 1.270 1.273 0.052 0.052
2 8000 6.0 5.024 5.096 5.957 5.960 0.211 0.211

A quick inspection of the model reveals that the Hessian (of size N ×N) is dense, thus
logistic regression models would serve as great “stress test” instances that can potentially
reveal potential limitations or performance issues in the edge pushing algorithm and our
implementation. For this reason we have taken N larger than it might be in typical
applications.

Table 5 shows the performance evaluations for (14) for increasing values of Hessian
dimension N . The Hessian evaluation times of edge pushing, JuMP, and AMPL seem to
increase quadratically with the N , which is expected since the Hessian is dense (thus the
number of nonzeros grows quadratically).

Edge pushing is slightly faster than the coloring algorithm; however, the space require-
ment is roughly six times larger because of our replication strategy. On the other hand,
AMPL is considerably faster than both edge pushing and coloring. It is unclear to us what
algorithm AMPL uses for dense Hessian computations. The work published in [14] seems
to indicate that summation of (dense) outer products are at the core of AMPL’s Hessian
computation. We believe that AMPL’s reliance on dense linear algebra kernels and the
use of sparse data structures in edge pushing and coloring implementations, which incur
a considerable performance penalty for dense matrices because of the irregular memory
access and time overhead from the integer arithmetic, could explain the performance
gap. For example, during the performance profiling phase of our implementation, we
observed that the running time of summing and copying the duplicated Hessian entries
in the buffer offered by the optimization solver at the end of the edge pushing algo-
rithm takes about 60% of the total AMPL Hessian evaluation time (N = 8 000). To rule
out potential Julia overhead we replicated the same summation/copying loop in C++
(with -O3 optimization); roughly the same running time was obtained. In the light of
this experiment, it is apparent to us that efficient computations of dense Hessians using
the edge pushing algorithm requires at minimum a reconsideration and redesign of the
Hessian data structure.

4.4 Power grid models

The last set of experiments are performed on alternating current optimal power flow
(ACOPF) problems. Such models are used on a daily basis in power grid operations as
optimization-based procedures for dispatching electricity in both the transmission and
distribution systems; they also serve as the backbone for the calculation of short-term
and realtime electricity prices. We use the ACOPF model made available by Artelys as
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a benchmark problem in AMPL format. The model was translated in JuMP format in
previous work by authors [4] and published as a benchmarking problem [16] for JuMP.
The mathematical formulation of the Kirchoff’s laws of power flow uses polar coordinates,
resulting in a highly nonlinear model. In addition, the networked nature of the problem
produces a Hessian that is highly structured, making this realistic problem a challenging
test for Hessian AD algorithms.

Table 6.: Performance results for nonlinear AC optimal power flow problems.

Edge pushing JuMP AMPL
Buses Edges nnz rf Hess. AD Hess. AD coloring Hess. AD

time time time time time time time

662 1017 8121 13.8 0.004 0.079 0.008 0.014 0.045 0.002 0.005
6620 10170 812100 13.8 0.046 0.135 0.086 0.132 0.718 0.032 0.066

66200 101700 8121000 13.8 0.457 0.702 0.882 1.324 16.584 0.319 0.6474

In Table 6 we show the performance of edge pushing, JuMP, and AMPL on three
ACOPF instances. The first instance uses a network with 662 nodes and 1 017 edges and
has 1 489 decision variables and 1 324 constraints. The Hessian of the Lagrangian has
8 121 nonzero entries. The other two instances were obtained synthetically by replicating
the network by 10 and 100 times, which results in a proportional increase in the the
dimension of the optimization problem. These two instances are also available at [16].

As expected, total AD times seem to grow linearly with the number of nonzeros in the
Hessian. Edge pushing and AMPL perform the best and are quite close, while coloring-
based algorithm of JuMP is roughly within a factor of two. Note that the coloring time
within JuMP is significant for this family of instances with an unstructured sparsity
pattern.

5. Conclusions

We proposed a data structure for efficient computations of large-scale sparse Hessians in
Julia using the Edge Pushing algorithm. The Julia implementation of the proposed vari-
ant of the Edge Pushing algorithm is successful in substantially closing the gap between
JuMP’s existing implementation of Hessian computations and that of AMPL. These re-
sults call for making the EP algorithm easily available for users, perhaps completely
replacing JuMP’s current coloring-based approaches. A considerable gap still exists for
dense Hessians, for which we advocate for the use of a specialized, “dense” data structure
with the Edge Pushing algorithm and possibly using a different EP basecode, following
AMPL’s approach.

Supplementary materials

The source code of our EP implementation is available at https://github.com/fqiang/
ReverseDiffTape.jl. The models that are used in our benchmark results in Section 4
are available in the benchmark directory of this repository.
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