Computing in Operations Research using Julia

Miles Lubin and Iain Dunning

MIT Operations Research Center

INFORMS 2013 - October 7, 2013

- High-level, high-performance, open-source dynamic language for technical computing.
- Keep productivity of dynamic languages without giving up speed.
- Familiar syntax
- Python+PyPy+SciPy+NumPy integrated completely.
- Latest concepts in programming languages.

• Claim: "close-to-C" speeds

• Within a factor of 2

	Fortran	Julia	Python	Matlab
fib	0.28	1.97	46.03	1587.03
parse_int	9.22	1.72	25.29	846.67
quicksort	1.65	1.37	69.20	133.46
mandel	0.76	1.45	34.88	74.61
pi_sum	1.00	1.00	33.64	1.46
rand_mat_stat	2.23	1.95	29.01	7.71
rand_mat_mul	1.14	1.00	1.75	1.08

• Performs well on microbenchmarks, but how about real computational problems in OR? Can we stop writing solvers in C++?

Technical advancements in Julia:

- Fast code generation (JIT via LLVM).
- Excellent connections to C libraries BLAS/LAPACK/...
- Metaprogramming.
- Optional typing, multiple dispatch.

• Write generic code, compile efficient type-specific code

```
C: (fast)
                  int f() {
                      int x = 1, y = 2;
                      return x+y;
                  }
Julia: (No type annotations)
                                Python: (slow)
function f()
                                def f():
    x = 1; y = 2
                                     x = 1; y = 2
    return x + y
                                     return x+y
```

end

- Requires type inference by compiler
- Difficult to add onto exiting languages
 - Available in MATLAB limited scope
 - PyPy for Python incompatible with many libraries
- Julia designed from the ground up to support type inference efficiently

- "Bread and butter" of operations research
- Computationally very challenging to implement efficiently¹
- Matlab implementations too slow to be used in practice
 - $\bullet\,$ High-quality open-source codes exist in C/C++
- Can Julia compete?

¹Bixby, Robert E. "Solving Real-World Linear Programs: A Decade and More of Progress", *Operations Research*, Vol. 50, pp. 3–15, 2002.

- Implemented benchmark operations in Julia, C++, MATLAB, Python.
- Run on real iteration data from 4 diverse instances from NETLIB
- https://github.com/mlubin/SimplexBenchmarks

- Sparse matrix-vector product
 - Used to compute row $(A^T(B^{-T}x))$ of tableau
- Ratio test
 - Realistic two-pass test for numerical stability
- Vector update $(y \leftarrow \alpha x + y)$
 - For updating primal and dual iterates.
- Both vector-dense and vector-sparse variants.
- Combined 20%-50% of total execution time on typical instances.

Table: Execution time of each language (version listed below) relative to C++ with bounds checking. Lower values are better. Dense/sparse distinction refers to the *vector* x; all matrices are sparse.

	Operation	Julia 0.1	C++ GCC	MATLAB R2012b	PyPy 1.9	Python 2.7.3
Dense	$\overline{A_{\mathcal{N}}^{T}x}$	1.27	0.79	7.78	4.53	84.69
	Ratio test	1.67	0.86	5.68	4.54	70.95
	$y \leftarrow \alpha x + y$	1.37	0.68	10.88	3.07	83.71
Sparse	$A^T x$	1.25	0.89	5.72	6.56	69.43
	Ratio test	1.65	0.78	4.35	13.62	73.47
	$y \leftarrow \alpha x + y$	1.84	0.68	17.83	8.57	81.48

	Operation	Julia 0.1	Julia 0.2
Dense	$ \begin{array}{c} \overline{A_{\mathcal{N}}^{T}x} \\ \text{Ratio test} \\ y \leftarrow \alpha x + y \end{array} $	1.27 1.67 1.37	1.19 1.43 1.23
Sparse	$y \leftarrow \alpha x + y$ $A^T x$ Ratio test	1.37 1.25 1.65	1.23 1.13 1.38
	$y \leftarrow \alpha x + y$	1.84	1.43

• 13% speedup since last release in February.

- Julia is homoiconic: code represented as a data structure
- Consider:

x = 2; y = 5 # Initialize variables

2x + y^x # Prints 29 on terminal

• Expression is stored like

 $\left(+,\left(*,2,x\right),\left(\wedge,y,x\right)\right)$

```
    Macro: a function that operates on code, e.g.
macro m(ex)
        ex.args[1] = :(-) # Replace operation with subtraction
return esc(ex) # Escape expression
        end
        @m(2x + y^x) # Prints 2*2 - 5^2 = -21
```

• Transform existing code, and generate new code

 $\left(-,\left(*,2,x\right),\left(\wedge,y,x\right)\right)$

- Dedicated/commercial e.g. AMPL, GAMS
 - Fast and expressive, not general purpose
 - AMPL:

```
var pick {i in 1..N} >= 0;
maximize Obj:
    sum {i in 1..N} profit[i] * pick[i];
```

- Embedded/open-source e.g. PuLP, Pyomo, CVX, YALMIP
 - Domain-specific language embedded in Python/MATLAB/...
 - Work via "operator overloading" slow
 - PuLP (Python):

```
prob = LpProblem("knapsack", LpMaximize)
pick = LpVariable.dicts("Pick",[i in range(N)], 0)
prob += sum(profit[i] * pick[i] for i in range(N)), "Obj"
```

- JuMP is AML in Julia that supports MILP, MIQCQP
- Use macros to avoid issues with operator overloading

m = Model(:Max)

```
@defVar(m, 0 <= x[j=1:N] <= 1)</pre>
```

@setObjective(m, sum{profit[j] * x[j], j=1:N})

@addConstraint(m, sum{weight[j] * x[j], j = 1:N} <= C)</pre>

- Goal: sparse representation of rows as pairs (number,variable)
- AMPL: could determine storage in first pass, evaluate in second
- Operator overloading: multiple allocations, final size unknown
- Julia macro: macro analyzes constraint, preallocates space, evaluates at run-time.
 - Generates code you would've written by hand.

```
vector<Variable> vars:
vector<double> coeffs;
vars.reserve( N ):
coeffs.reserve( N );
for (int i = 1; i <= N; i++) {
    vars.push_back( x[i] );
    coeffs.push_back( weight[i] );
}
vars.push_back( s );
coeffs.push_back( 1.0 );
model.addConstraint(vars, coeffs, "<=", capacity);</pre>
```

Table: Linear-quadratic control benchmark results. N=M is the grid size. Total time (in seconds) to process the model definition and produce the output file in LP and MPS formats (as available).

	JuMP/Julia		AMPL	Gurobi/C++		Pulp/PyPy		Pyomo
Ν	LP	MPS	MPS	LP	MPS	LP	MPS	LP
250	0.5	0.9	0.8	1.2	1.1	8.3	7.2	13.3
500	2.0	3.6	3.0	4.5	4.4	27.6	24.4	53.4
750	5.0	8.4	6.7	10.2	10.1	61.0	54.5	121.0
1,000	9.2	15.5	11.6	17.6	17.3	108.2	97.5	214.7

http://github.com/IainNZ/JuMP.jl

- Available via Julia package manager
- Completely documented!
- GPL license
- Solver independent (COIN Clp, COIN Cbc, GLPK, Gurobi)
- Works on Linux, OS X, and Windows

 $\min f(x) \\ \text{s.t. } g(x) \le 0$

- AMLs need to provide derivatives of expressions f(x) and g(x) to solvers
- Traditional technique: automatic differentiation
 - Outputs representation of derivative, e.g. .nl file
 - Complex implementation
- Julia
 - Apply chain rule directly to symbolic expression
 - JIT compile a function which evaluates the derivative

```
m = Model(:Min)
h = 1/n
QdefVar(m, -1 \le t[1:(n+1)] \le 1)
QdefVar(m, -0.05 \le x[1:(n+1)] \le 0.05)
@defVar(m, u[1:(n+1)])
for i in 1:n
    @addNLConstr(m, x[i+1] - x[i] -
            (0.5h)*(sin(t[i+1])+sin(t[i])) == 0)
end
for i in 1:n
    @addNLConstr(m, t[i+1] - t[i] -
            (0.5h)*u[i+1] - (0.5h)*u[i] == 0)
end
```

```
@addNLConstr(m, x[i+1] - x[i] -
            (0.5h)*(sin(t[i+1])+sin(t[i])) == 0)
void eval_jac(double *x, int *iRow, int *jCol, double *values)
{
    int vindex1[] = \{\ldots\};
    . . .
    for (int i = 0; i < n; i++)
        values[vindex1[i]] = 1;
    for (int i = 0; i < n; i++)
        values[vindex2[i]] = -1;
    for (int i = 0; i < n; i++)
        values[vindex3[i]] = -0.5*h*cos(x[xindex3[i]]);
    for (int i = 0; i < n; i++)
        values[vindex4[i]] = -0.5*h*cos(x[xindex4[i]]);
```

```
}
```

- In-place update of values of sparse matrix
- vindex and xindex precomputed, matching sparse indices

Table: Nonlinear benchmark results. "Build model" includes writing and reading model files, if required, and precomputing the structure of the Jacobian. Pyomo uses AMPL for Jacobian evaluations.

	Build model (s)				Evaluat	te Jacol	bian (ms)
Prob.	AMPL	Julia	YALMIP	Pyomo	AMPL	Julia	YALMIP
A-5	0.2	0.1	36.0	2.3	0.4	0.3	8.3
A-50	1.8	0.3	1344.8	23.7	7.3	4.2	96.4
A-500	18.3	3.3	>3600	233.9	74.1	74.6	*
B-2	1.1	0.3	2.0	12.2	1.1	0.8	9.3
B-4	4.4	1.4	1.9	49.4	5.4	3.0	37.4
B-10	27.6	6.1	13.5	310.4	33.7	39.4	260.0

- Julia delivers on promise of C-like performance.
- Alegebraic modeling via metaprogramming
- JuMP released for use
- New features under active development