
Computing in Operations Research using Julia

Miles Lubin and Iain Dunning

MIT Operations Research Center

INFORMS 2013 – October 7, 2013

1 / 25

High-level, high-performance, open-source dynamic language for
technical computing.

Keep productivity of dynamic languages without giving up speed.

Familiar syntax

Python+PyPy+SciPy+NumPy integrated completely.

Latest concepts in programming languages.

2 / 25

Claim: “close-to-C” speeds

Within a factor of 2

Performs well on microbenchmarks, but how about real computational
problems in OR? Can we stop writing solvers in C++?

3 / 25

Technical advancements in Julia:

Fast code generation (JIT via LLVM).

Excellent connections to C libraries - BLAS/LAPACK/...

Metaprogramming.

Optional typing, multiple dispatch.

4 / 25

Write generic code, compile efficient type-specific code

C: (fast)

int f() {

int x = 1, y = 2;

return x+y;

}

Julia: (No type annotations)

function f()

x = 1; y = 2

return x + y

end

Python: (slow)

def f():

x = 1; y = 2

return x+y

5 / 25

Requires type inference by compiler

Difficult to add onto exiting languages

Available in MATLAB – limited scope
PyPy for Python – incompatible with many libraries

Julia designed from the ground up to support type inference efficiently

6 / 25

Simplex algorithm

“Bread and butter” of operations research

Computationally very challenging to implement efficiently1

Matlab implementations too slow to be used in practice

High-quality open-source codes exist in C/C++

Can Julia compete?

1Bixby, Robert E. ”Solving Real-World Linear Programs: A Decade and
More of Progress”, Operations Research, Vol. 50, pp. 3–15, 2002.

7 / 25

Implemented benchmark operations in Julia, C++, MATLAB,
Python.

Run on real iteration data from 4 diverse instances from NETLIB

https://github.com/mlubin/SimplexBenchmarks

8 / 25

https://github.com/mlubin/SimplexBenchmarks

Sparse matrix-vector product

Used to compute row (AT (B−T x)) of tableau

Ratio test

Realistic two-pass test for numerical stability

Vector update (y ← αx + y)

For updating primal and dual iterates.

Both vector-dense and vector-sparse variants.

Combined 20%–50% of total execution time on typical instances.

9 / 25

greenbea stocfor3 ken−13 fome12

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−3

10−2

10−1

100

Den
. M

at
Ve

c

Den
. R

at
io

Den
. A

xp
y

Sp.
M

at
Ve

c

Sp.
Rat

io.

Sp.
Axp

y

Den
. M

at
Ve

c

Den
. R

at
io

Den
. A

xp
y

Sp.
M

at
Ve

c

Sp.
Rat

io.

Sp.
Axp

y

Den
. M

at
Ve

c

Den
. R

at
io

Den
. A

xp
y

Sp.
M

at
Ve

c

Sp.
Rat

io.

Sp.
Axp

y

Den
. M

at
Ve

c

Den
. R

at
io

Den
. A

xp
y

Sp.
M

at
Ve

c

Sp.
Rat

io.

Sp.
Axp

y

Operation

T
im

e
pe

r
ite

ra
tio

n
(s

ec
.)

Language

● Julia

C++

C++ w/
bound chk.

MATLAB

PyPy

Table: Execution time of each language (version listed below) relative to C++
with bounds checking. Lower values are better. Dense/sparse distinction refers to
the vector x ; all matrices are sparse.

Julia C++ MATLAB PyPy Python
Operation 0.1 GCC R2012b 1.9 2.7.3

Dense AT
N x 1.27 0.79 7.78 4.53 84.69

Ratio test 1.67 0.86 5.68 4.54 70.95
y ← αx + y 1.37 0.68 10.88 3.07 83.71

Sparse AT x 1.25 0.89 5.72 6.56 69.43
Ratio test 1.65 0.78 4.35 13.62 73.47
y ← αx + y 1.84 0.68 17.83 8.57 81.48

11 / 25

Julia Julia
Operation 0.1 0.2

Dense AT
N x 1.27 1.19

Ratio test 1.67 1.43
y ← αx + y 1.37 1.23

Sparse AT x 1.25 1.13
Ratio test 1.65 1.38
y ← αx + y 1.84 1.43

13% speedup since last release in February.

12 / 25

Macros and metaprogramming

Julia is homoiconic: code represented as a data structure

Consider:

x = 2; y = 5 # Initialize variables

2x + y^x # Prints 29 on terminal

Expression is stored like

(+, (∗, 2, x) , (∧, y , x))

13 / 25

Macro: a function that operates on code, e.g.

macro m(ex)

ex.args[1] = :(-) # Replace operation with subtraction

return esc(ex) # Escape expression

end

@m(2x + y^x) # Prints 2*2 - 5^2 = -21

Transform existing code, and generate new code

(−, (∗, 2, x) , (∧, y , x))

14 / 25

Algebraic Modeling Languages

Dedicated/commercial - e.g. AMPL, GAMS

Fast and expressive, not general purpose
AMPL:

var pick {i in 1..N} >= 0;

maximize Obj:

sum {i in 1..N} profit[i] * pick[i];

Embedded/open-source - e.g. PuLP, Pyomo, CVX, YALMIP

Domain-specific language embedded in Python/MATLAB/...
Work via ”operator overloading” - slow
PuLP (Python):

prob = LpProblem("knapsack", LpMaximize)

pick = LpVariable.dicts("Pick",[i in range(N)], 0)

prob += sum(profit[i] * pick[i] for i in range(N)), "Obj"

15 / 25

JuMP is AML in Julia that supports MILP, MIQCQP

Use macros to avoid issues with operator overloading

m = Model(:Max)

@defVar(m, 0 <= x[j=1:N] <= 1)

@setObjective(m, sum{profit[j] * x[j], j=1:N})

@addConstraint(m, sum{weight[j] * x[j], j = 1:N} <= C)

16 / 25

Goal: sparse representation of rows as pairs (number,variable)

AMPL: could determine storage in first pass, evaluate in second

Operator overloading: multiple allocations, final size unknown

Julia macro: macro analyzes constraint, preallocates space, evaluates
at run-time.

Generates code you would’ve written by hand.

17 / 25

@addConstraint(m, sum{weight[j]*x[j], j=1:N} + s == capacity)

vector<Variable> vars;

vector<double> coeffs;

vars.reserve(N);

coeffs.reserve(N);

for (int i = 1; i <= N; i++) {

vars.push_back(x[i]);

coeffs.push_back(weight[i]);

}

vars.push_back(s);

coeffs.push_back(1.0);

model.addConstraint(vars, coeffs, "<=", capacity);

18 / 25

Table: Linear-quadratic control benchmark results. N=M is the grid size. Total
time (in seconds) to process the model definition and produce the output file in
LP and MPS formats (as available).

JuMP/Julia AMPL Gurobi/C++ Pulp/PyPy Pyomo

N LP MPS MPS LP MPS LP MPS LP

250 0.5 0.9 0.8 1.2 1.1 8.3 7.2 13.3
500 2.0 3.6 3.0 4.5 4.4 27.6 24.4 53.4
750 5.0 8.4 6.7 10.2 10.1 61.0 54.5 121.0
1,000 9.2 15.5 11.6 17.6 17.3 108.2 97.5 214.7

19 / 25

Availability

http://github.com/IainNZ/JuMP.jl

Available via Julia package manager

Completely documented!

GPL license

Solver independent (COIN Clp, COIN Cbc, GLPK, Gurobi)

Works on Linux, OS X, and Windows

20 / 25

http://github.com/IainNZ/JuMP.jl

Nonlinear modeling

min f (x)

s.t. g(x) ≤ 0

AMLs need to provide derivatives of expressions f (x) and g(x) to
solvers

Traditional technique: automatic differentiation

Outputs representation of derivative, e.g. .nl file
Complex implementation

Julia

Apply chain rule directly to symbolic expression
JIT compile a function which evaluates the derivative

21 / 25

m = Model(:Min)

h = 1/n

@defVar(m, -1 <= t[1:(n+1)] <= 1)

@defVar(m, -0.05 <= x[1:(n+1)] <= 0.05)

@defVar(m, u[1:(n+1)])

for i in 1:n

@addNLConstr(m, x[i+1] - x[i] -

(0.5h)*(sin(t[i+1])+sin(t[i])) == 0)

end

for i in 1:n

@addNLConstr(m, t[i+1] - t[i] -

(0.5h)*u[i+1] - (0.5h)*u[i] == 0)

end

22 / 25

@addNLConstr(m, x[i+1] - x[i] -

(0.5h)*(sin(t[i+1])+sin(t[i])) == 0)

void eval_jac(double *x, int *iRow, int *jCol, double *values)

{

int vindex1[] = {...};

...

for (int i = 0; i < n; i++)

values[vindex1[i]] = 1;

for (int i = 0; i < n; i++)

values[vindex2[i]] = -1;

for (int i = 0; i < n; i++)

values[vindex3[i]] = -0.5*h*cos(x[xindex3[i]]);

for (int i = 0; i < n; i++)

values[vindex4[i]] = -0.5*h*cos(x[xindex4[i]]);

}

In-place update of values of sparse matrix

vindex and xindex precomputed, matching sparse indices

23 / 25

Table: Nonlinear benchmark results. “Build model“ includes writing and reading
model files, if required, and precomputing the structure of the Jacobian. Pyomo
uses AMPL for Jacobian evaluations.

Build model (s) Evaluate Jacobian (ms)

Prob. AMPL Julia YALMIP Pyomo AMPL Julia YALMIP

A-5 0.2 0.1 36.0 2.3 0.4 0.3 8.3
A-50 1.8 0.3 1344.8 23.7 7.3 4.2 96.4
A-500 18.3 3.3 >3600 233.9 74.1 74.6 *
B-2 1.1 0.3 2.0 12.2 1.1 0.8 9.3
B-4 4.4 1.4 1.9 49.4 5.4 3.0 37.4
B-10 27.6 6.1 13.5 310.4 33.7 39.4 260.0

24 / 25

Conclusions

Julia delivers on promise of C-like performance.

Alegebraic modeling via metaprogramming

JuMP released for use

New features under active development

25 / 25

