JuMP: Nonlinear Modeling with Exact Hessians in Julia

Miles Lubin, Iain Dunning, and Joey Huchette

MIT Operations Research Center

INFORMS 2014 – November 9, 2014
Challenges traditional performance trade-offs: **high-level, dynamic, and fast**

- Familiar syntax for Python and MATLAB users
- Technical advances that can change how we compute in the field of Operations Research (Lubin and Dunning, forthcoming in IJOC)
Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia

cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...
JuMP

- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
 - cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...
- Version 0.1 released in October 2013 (LP, QP, MILP)
- Version 0.2 released in December 2013 (Advanced MILP)
 - ↑ Iain Dunning’s talk tomorrow
- Version 0.5 released in May 2014 (NLP)
User inputs closed-form expressions for \(f \) and \(g \)

Modeling language communicates with solver to provide derivatives

Traditionally, Hessian of Lagrangian:

\[
\nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g(x)
\]
State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library to read and query derivatives

State of the art

NL files: AMPL (or others...) write .nl file to disk, solver uses asl library to read and query derivatives

Can we do better?

- Improve performance by avoiding writing to disk
- Flexibility of lightweight, pure-Julia implementation
Methods for computing derivatives

- **Symbolic**
 - Does not scale well to second-order derivatives

- **Automatic Differentiation (AD)**
 - Reverse mode
 - Forward mode
Reverse mode AD in 2 slides

Assume function f is given in the form,

```markdown
function $f(x_1, x_2, \ldots, x_n)$
    for $i = n + 1, n + 2, \ldots, N$ do
        $x_i \leftarrow g_i(x_{S_i})$
    end for
    return $x_N$
end function
```

- S_i – input to ith operation, subset of $\{1, 2, \ldots, i - 1\}$, ($|S_i| \leq 2$)
- g_i – “basic” operation: $+, \times, \sqrt{}, \sin, \exp, \log, \ldots$

Then

$$
\frac{\partial f(x)}{\partial x_i} = \frac{\partial x_N}{\partial x_i} = \sum_{j : i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i}
$$
Note $i \in S_j$ implies $j > i$, which means that we can **compute all partials** by running the function in reverse:

\[
\begin{align*}
\frac{\partial x_N}{\partial x_N} & \leftarrow 1 \\
\text{for } i = N - 1, N - 2, \ldots, 2, 1 \text{ do} & \\
\quad \text{if } i > n \text{ then} & \\
\quad \quad \text{for } k \in S_i \text{ do} & \\
\quad \quad \quad \text{Compute and store } \frac{\partial g_i(x_{S_i})}{\partial x_k} & \\
\quad \quad \text{end for} & \\
\quad \text{end if} & \\
\frac{\partial x_N}{\partial x_i} & \leftarrow \sum_{j: i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i} & \\
\text{end for} & \\
\end{align*}
\]

At the end we obtain

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]
Discussion

- Can all functions be represented in the procedural form?
- What’s the computational cost to compute a gradient?
Can all functions be represented in the procedural form?
- Trivial for closed-form algebraic expressions (good for JuMP)
- Yes in general, but sequence of operations may change over domain

What’s the computational cost to compute a gradient?
Can all functions be represented in the procedural form?
- Trivial for closed-form algebraic expressions (good for JuMP)
- Yes in general, but sequence of operations may change over domain

What’s the computational cost to compute a gradient?
- $O(1)$ function evaluations! (c.f. $O(n)$ for finite differences)
- $O(\#operations)$ storage
Example

\[f(x_1, x_2) = \sin(x_1) \exp(x_2) \]

function \(f(x_1, x_2) \)
\begin{align*}
x_3 & \leftarrow \sin(x_1) \\
x_4 & \leftarrow \exp(x_2) \\
x_5 & \leftarrow x_3 \times x_4
\end{align*}

return \(x_5 \)
end function
function $\nabla f(x_1, x_2)$

\[
x_3 \leftarrow \sin(x_1)
\]

\[
x_4 \leftarrow \exp(x_2)
\]

\[
x_5 \leftarrow x_3 \times x_4
\]

\[
z_5 \leftarrow 1
\]

\[
z_4 \leftarrow x_3
\]

\[
z_3 \leftarrow x_4
\]

\[
z_2 \leftarrow z_4 \exp(x_2)
\]

\[
z_1 \leftarrow z_3 \cos(x_1)
\]

return (z_1, z_2)

end function

$z_i := \frac{\partial x_5}{\partial x_i}$
One can view reverse-mode AD as a method for transforming code to compute a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

- Usually implemented by interpreting each instruction

Why not just generate new code and compile it instead? Let compiler optimize, essentially as fast as hand-written derivatives. Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's `nlc`). In Julia, easy to manipulate and compile expressions at runtime, so this is what we do! 500 lines of code, transparent to the user.
One can view reverse-mode AD as a method for *transforming code* to compute a function \(f : \mathbb{R}^n \to \mathbb{R} \) into code to compute the gradient function \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \).

- Usually implemented by *interpreting* each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL’s nlc)
One can view reverse-mode AD as a method for *transforming code* to compute a function $f : \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

- Usually implemented by *interpreting* each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL’s nlc)
- In Julia, *easy to manipulate and compile expressions at runtime*, so this is what we do!
 - 500 lines of code, transparent to the user
Forward-mode AD

- $f(x + y\epsilon) = f(x) + yf'(x)\epsilon$
- Idea: extend all operations to carry first-order taylor expansion terms
Does this require access to the “procedural form”?

What’s the computational cost?
Does this require access to the “procedural form”?
 - No, implement via operator overloading*
 - Write generic (templated) code in Julia

What’s the computational cost?
Wait, isn’t operator overloading slow?

\[(z::\text{Dual}, w::\text{Dual}) = \text{dual}(\text{real}(z)\times\text{real}(w),
\hline
\text{epsilon}(z)\times\text{real}(w)+\text{real}(z)\times\text{epsilon}(w))
\]

```julia
julia> code_native(*,(Dual{Float64},Dual{Float64}))
```

```assembly
push RBP
mov RBP, RSP
vmulsd XMM3, XMM0, XMM3
vmulsd XMM1, XMM1, XMM2
vaddsd XMM1, XMM1, XMM3
vmulsd XMM0, XMM0, XMM2
pop RBP
ret
```

- Efficient code for *immutable* types
- Does this require access to the “procedural form”?
 - No, implement via operator overloading
 - Write generic (templated) code in Julia
- What’s the computational cost?
 - Directional derivatives in $O(1)$ evaluations, like finite differencing
 - So $O(n)$ evaluations for Jacobian of $f : \mathbb{R}^n \rightarrow \mathbb{R}^k$
 - Doesn’t scale like reverse-mode for gradients, but...
Does this require access to the “procedural form”?
- No, implement via operator overloading
- Write generic (templated) code in Julia

What’s the computational cost?
- *Directional derivatives* in $O(1)$ evaluations, like finite differencing
- So $O(n)$ evaluations for Jacobian of $f : \mathbb{R}^n \to \mathbb{R}^k$
- Doesn’t scale like reverse-mode for gradients, but...
Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

The Jacobian of $\nabla f(x)$ is $\nabla^2 f(x)$. So compute full Hessian matrix in $O(n)$ evaluations of f.

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

The Jacobian of $\nabla f(x)$ is $\nabla^2 f(x)$. So compute full Hessian matrix in $O(n)$ evaluations of f.

Alternatively: *Hessian-vector* product $\nabla^2 f(x)d$ is directional derivative of $\nabla f(x)$, can compute in $O(1)$ evaluations of f.

Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \cdots, 1)$ to “recover” all nonzero entries of $\nabla^2 f(x)$.

Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)

We implement the coloring heuristic of Gebremedhin et al (2009).
Exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \cdots, 1)$ to “recover” all nonzero entries of $\nabla^2 f(x)$.

In general, what is the smallest number of Hessian-vector products needed to recover all nonzero elements of $\nabla^2 f(x)$?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
- We implement the coloring heuristic of Gebremedhin et al (2009).
Benchmarks

Model generation time: Time between user pressing enter and solver starting

Function evaluation time: Time evaluating derivatives

Total CPU secs in IPOPT (w/o function evaluations) = 224.725
Total CPU secs in NLP function evaluations = 29.510

Performance goal: **Don’t be the bottleneck!**
alpha = 350

h = 1/N

m = Model()

defVar(m, -1 <= t[1:(N+1)] <= 1)
defVar(m, -0.05 <= x[1:(N+1)] <= 0.05)
defVar(m, u[1:(N+1)])

setNLObjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) + 0.5*alpha*h*(cos(t[i+1]) + cos(t[i])), i=1:N})

addNLConstraint(m, cons1[i=1:N], x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)
addConstraint(m, cons2[i=1:N], t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0)
<table>
<thead>
<tr>
<th>N</th>
<th>JuMP</th>
<th>AMPL</th>
<th>Pyomo</th>
<th>YALMIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>0.6</td>
<td>0.2</td>
<td>4.8</td>
<td>116.6</td>
</tr>
<tr>
<td>50,000</td>
<td>1.9</td>
<td>2.8</td>
<td>44.2</td>
<td>OOM</td>
</tr>
<tr>
<td>500,000</td>
<td>17.2</td>
<td>211.6</td>
<td>636.1</td>
<td>OOM</td>
</tr>
</tbody>
</table>

OOM = Exceeded 64GB of RAM!

Model has $3N$ variables and $2N$ constraints. Diagonal Hessian.
Pyomo writes .nl files. YALMIP pure MATLAB.
For $N = 500,000$, .nl file is 180MB.
Table: Hessian evaluation time (sec.)

<table>
<thead>
<tr>
<th>N</th>
<th>JuMP</th>
<th>asl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>50,000</td>
<td>0.055</td>
<td>0.042</td>
</tr>
<tr>
<td>500,000</td>
<td>0.573</td>
<td>0.438</td>
</tr>
</tbody>
</table>

asl: AMPL & Pyomo. YALMIP does not provide Hessians.
JuMP uses solver-independent `MathProgBase` interface for connecting to solvers.

For LP/MILP: CPLEX, Clp, Cbc, ECOS, GLPK, Gurobi, Mosek

For NLP: Ipopt, KNITRO, Mosek, NLopt

All interfaces *in-memory*. **Order of magnitude easier** to interface with C and Fortran from Julia compared with Python and MATLAB.
Availability

http://github.com/JuliaOpt/JuMP.jl

- Available via Julia package manager
- Easy installation of open-source solvers on all platforms\(^1\)
- LGPL license

\(^1\) Thanks to many contributors
Who’s using JuMP?

- 4,000 monthly hits to GitHub page (50% from outside of USA)
- “Integer Programming” and “Optimization Methods” courses at MIT
- ...

JuliaOpt/JuMP.jl 100 stars by location

powered by red dwarf
Thank you!
- Early paper, does not include description of automatic differentiation

- Graph coloring algorithm used by JuMP

Blog post by Justin Domke
- Simple explanation of reverse-mode AD

ReverseDiffSparse.jl and DualNumbers.jl
- Modular implementations of reverse mode and forward mode AD used by JuMP