AUTOMATIC DIFFERENTIATION TECHNIQUES USED IN JUMP

Miles Lubin, Iain Dunning, and Joey Huchette
June 22, 2016
MIT Operations Research Center

- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
- cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...
http://www.juliaopt.org/

NONLINEAR MODELING

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0
\end{aligned}
$$

- User inputs "closed-form" expressions for f and g
- Modeling language communicates with solver to provide derivatives
- Traditionally, Hessian of Lagrangian:

$$
\nabla^{2} f(x)+\sum_{i} \lambda_{i} \nabla^{2} g(x)
$$

http://nbviewer.ipython.org/github/JuliaOpt/ juliaopt-notebooks/blob/master/notebooks/ JuMP-Rocket.ipynb

```
Julia Code
m = Model()
@variable(m, x[1:N])
@NLconstraint(m, sin(x[1])<= 0.5)
```


OVERVIEW

Will discuss how JuMP computes derivatives: algorithms and data structures.

Related work:

- Machine Learning: TensorFlow, Torch, etc.
- Statistics: Stan
- PDEs: FEniCS, UFL
- Control: CasADi

METHODS FOR COMPUTING DERIVATIVES

- Symbolic
- Does not scale well, especially to second-order derivatives
- Automatic Differentiation (AD)
- Reverse mode
- Forward mode

REVERSE MODE AD IN 2 SLIDES

Assume function f is given in the form, function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
for $i=n+1, n+2, \ldots, N$ do

$$
x_{i} \leftarrow g_{i}\left(x_{S_{i}}\right)
$$

end for
return x_{N}

end function

- S_{i} - input to ith operation, subset of $\{1,2, \ldots, i-1\},\left(\left|S_{i}\right| \leq 2\right)$
- g_{i} - "basic" operation: +,*, sqrt, sin, exp, log, ...

Then

$$
\frac{\partial f(x)}{\partial x_{i}}=\frac{\partial x_{N}}{\partial x_{i}}=\sum_{j: i: i \in S_{j}} \frac{\partial x_{N}}{\partial x_{j}} \frac{\partial g_{j}\left(x_{S_{j}}\right)}{\partial x_{i}}
$$

Note $i \in S_{j}$ implies $j>i$, which means that we can compute all partials by running the function in reverse:

$$
\begin{aligned}
& \frac{\partial x_{N}}{\partial x_{N}} \leftarrow 1 \\
& \text { for } i=N-1, N-2, \ldots, 2,1 \text { do } \\
& \quad \text { if } i>n \text { then } \\
& \quad \text { for } k \in S_{i} \text { do } \\
& \quad \text { Compute and store } \frac{\partial g_{i}\left(x_{S_{j}}\right)}{\partial x_{k}} \\
& \quad \text { end for } \\
& \text { end if } \\
& \frac{\partial x_{N}}{\partial x_{i}} \leftarrow \sum_{j: i \in S_{j}} \frac{\partial x_{N}}{\partial x_{j}} \frac{\partial g_{j}\left(x_{s_{j}}\right)}{\partial x_{i}} \\
& \text { end for }
\end{aligned}
$$

At the end we obtain

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)
$$

What's the computational cost to compute a gradient?

What's the computational cost to compute a gradient?

- $O(1)$ function evaluations! (c.f. $O(n)$ for finite differences)
- O(\#operations) storage

EXAMPLE

$$
f\left(x_{1}, x_{2}\right)=\sin \left(x_{1}\right) \exp \left(x_{2}\right)
$$

function $f\left(x_{1}, x_{2}\right)$
$x_{3} \leftarrow \sin \left(x_{1}\right)$
$x_{4} \leftarrow \exp \left(x_{2}\right)$
$x_{5} \leftarrow x_{3} * x_{4}$
return x_{5}
end function

```
function \(\nabla f\left(x_{1}, x_{2}\right)\)
    \(x_{3} \leftarrow \sin \left(x_{1}\right)\)
    \(x_{4} \leftarrow \exp \left(x_{2}\right)\)
    \(x_{5} \leftarrow x_{3} * x_{4}\)
    \(z_{5} \leftarrow 1\)
    \(Z_{4} \leftarrow x_{3}\)
    \(z_{3} \leftarrow x_{4}\)
    \(z_{2} \leftarrow z_{4} \exp \left(x_{2}\right)\)
    \(z_{1} \leftarrow z_{3} \cos \left(x_{1}\right)\)
    return \(\left(z_{1}, z_{2}\right)\)
end function
```

$z_{i}:=\frac{\partial x_{5}}{\partial x_{i}}$

One can view reverse-mode AD as a method for transforming code to compute a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Usually implemented by interpreting each instruction

One can view reverse-mode AD as a method for transforming code to compute a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
- Let compiler optimize, essentially as fast as hand-written derivatives
- Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)

One can view reverse-mode AD as a method for transforming code to compute a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
- Let compiler optimize, essentially as fast as hand-written derivatives
- Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)
- In Julia, implementation easy but compilation time was prohibitive, so we now "interpret" expressions (ReverseDiffSparse v0.3 $\rightarrow \mathrm{v} 0.5$)

One can view reverse-mode AD as a method for transforming code to compute a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
- Let compiler optimize, essentially as fast as hand-written derivatives
- Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)
- In Julia, implementation easy but compilation time was prohibitive, so we now "interpret" expressions (ReverseDiffSparse v0.3 \rightarrow v0.5)
- See also ReverseDiffSource.jl

JUMP'S REVERSE-MODE IMPLEMENTATION

Recall each operation g_{i} is associated with a set S_{i} - list of inputs. Useful to think of operations as nodes in a graph, inputs as children.

Example: $\sin \left(x_{1}\right) \cos \left(x_{2}\right)$

Call this expression tree (or expression graph).

DATA STRUCTURE FOR EXPRESSION TREES

- JuMP's expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC'd objects floating around is not great for performance in Julia

DATA STRUCTURE FOR EXPRESSION TREES

- JuMP's expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC'd objects floating around is not great for performance in Julia

Problem: Design an efficient data structure for expression trees with a constant number of GC'd objects, regardless of size of tree.

- Graphs and LightGraphs use Vector\{Vector\} for list of children.

Problem: Design an efficient data structure for expression trees with a constant number of GC'd objects, regardless of size of tree.

Problem: Design an efficient data structure for expression trees with a constant number of GC'd objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

Problem: Design an efficient data structure for expression trees with a constant number of GC'd objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (conversion code)

Problem: Design an efficient data structure for expression trees with a constant number of GC'd objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (conversion code)

Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

FORWARD-MODE AD

JuMP uses forward-mode AD (see Jarrett's talk next) for:

- Second-order derivatives, composed with reverse mode
- Gradients of user-defined functions

COMPUTING HESSIANS

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

COMPUTING HESSIANS

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

Hessian-vector product $\nabla^{2} f(x) d$ is directional derivative of $\nabla f(x)$, can compute in $O(1)$ evaluations of f using forward mode ad composed with reverse mode.

EXPLOITING SPARSITY

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^{2} f(x) d$ with vector $d=(1, \cdots, 1)$ to "recover" all nonzero entries of $\nabla^{2} f(x)$.

EXPLOITING SPARSITY

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^{2} f(x) d$ with vector $d=(1, \cdots, 1)$ to "recover" all nonzero entries of $\nabla^{2} f(x)$.

In general, what is the smallest number of Hessian-vector products needed to recover all nonzero elements of $\nabla^{2} f(x)$?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
- We implement the coloring heuristic of Gebremedhin et al (2009).

USER-DEFINED FUNCTIONS

function squareroot(x)
z = x \# Initial starting point for Newton's method while abs(z*z - x) > 1e-13

$$
z=z-(z * z-x) /(2 z)
$$

end
return z
end
JuMP.register(:squareroot, 1, squareroot, autodiff=true)
$m=\operatorname{Model}()$
@variable(m, x[1:2], start=0.5)
Øobjective(m, Max, sum(x))
©NLconstraint(m, squareroot($\left.\left.x[1]^{\wedge} 2+x[2]^{\wedge} 2\right)<=1\right)$
solve(m)

Limitations:

- Function must accept generic number type, follow guidelines for ForwardDiff.jl
- No Hessians yet
- Low-dimensional functions only, no vector input

BENCHMARKS

Model generation time: Time between user pressing enter and solver starting

Function evaluation time: Time evaluating derivatives

```
Total CPU secs in IPOPT (w/o function evaluations) = 224.725
Total CPU secs in NLP function evaluations = 29.510
```

Performance goal: Don't be the bottleneck!

CLNLBEAM MODEL

$$
\begin{aligned}
& \begin{aligned}
\text { alpha } & =350 \\
\mathrm{~h} & =1 / \mathrm{N}
\end{aligned} \\
& \mathrm{~m}=\operatorname{Model}()
\end{aligned}
$$

$$
\text { @variable(m, -1 }<=t[1:(N+1)]<=1)
$$

$$
\text { @variable(m, }-0.05<=x[1:(N+1)]<=0.05)
$$

@variable(m, u[1:(N+1)])
@NLobjective(m, Min, sum\{ $0.5 * h *\left(u[i+1]^{\wedge} 2+u[i]^{\wedge} 2\right)+$

$$
\begin{gathered}
0.5 * a l p h a * h *(\cos (t[i+1])+ \\
\cos (t[i])), \quad i=1: N\})
\end{gathered}
$$

@NLconstraint(m, cons1[i=1:N],

$$
x[i+1]-x[i]-0.5 * h *(\sin (t[i+1])+\sin (t[i]))==0)
$$

aconstraint(m, cons2[i=1:N],

$$
t[i+1]-t[i]-(0.5 h) * u[i+1]-(0.5 h) * u[i]==0)
$$

Table: Model generation time (sec.)

	Commercial			Open-source	
Instance	JuMP	AMPL	GAMS	Pyomo	YALMIP
clnlbeam-5	12	0	0	5	76
clnlbeam-50	14	2	3	44	>600
clnlbeam-500	38	22	35	453	>600
acpower-1	18	0	0	3	-
acpower-10	21	1	2	26	-
acpower-100	66	14	16	261	-

clnlbeam has diagonal Hessian, acpower complex hessian structure.

Pyomo uses AMPL's open-source AD library. YALMIP pure MATLAB.

Table: Time (sec.) to evaluate derivatives (including gradients, Jacobians, and Hessians) during 3 iterations, as reported by Ipopt.

Commercial

Instance	JuMP	AMPL	GAMS
clnlbeam-5	0.03	0.03	0.09
cInlbeam-50	0.39	0.34	0.74
cInlbeam-500	4.72	3.40	15.69
acpower-1	0.07	0.02	0.06
acpower-10	0.66	0.30	0.53
acpower-100	6.11	3.20	18.13

Thank you to Julia developers, JuliaOpt contributors, JuMP users, JuliaCon organizers, and the audience!

More on AD in JuMP:
http://arxiv.org/abs/1508.01982

Explanation of reverse mode inspired by Justin Domke's blog post

