AUTOMATIC DIFFERENTIATION TECHNIQUES USED IN JUMP

Miles Lubin, Iain Dunning, and Joey Huchette

June 22, 2016

MIT Operations Research Center

- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
 - o cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

```
http://www.juliaopt.org/
```

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0 \end{array}$

- User inputs "closed-form" expressions for f and g
- Modeling language communicates with *solver* to provide derivatives
 - Traditionally, Hessian of Lagrangian:

$$\nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g(x)$$

http://nbviewer.ipython.org/github/JuliaOpt/ juliaopt-notebooks/blob/master/notebooks/ JuMP-Rocket.ipynb

Will discuss how JuMP computes derivatives: algorithms and data structures.

Related work:

- Machine Learning: TensorFlow, Torch, etc.
- Statistics: Stan
- PDEs: FEniCS, UFL
- Control: CasADi

- Symbolic
 - $\circ~$ Does not scale well, especially to second-order derivatives
- Automatic Differentiation (AD)
 - Reverse mode
 - Forward mode

Assume function f is given in the form, function $f(x_1, x_2, ..., x_n)$ for i = n + 1, n + 2, ..., N do $x_i \leftarrow g_i(x_{S_i})$ end for return x_N end function

- S_i input to *i*th operation, subset of {1, 2, ..., i 1}, ($|S_i| \le 2$)
- g_i "basic" operation: +, *, sqrt, sin, exp, log, ...

Then

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{\partial x_N}{\partial x_i} = \sum_{j:i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i}$$

Note $i \in S_j$ implies j > i, which means that we can **compute all** partials by running the function in reverse:

$$\begin{array}{l} \frac{\partial x_N}{\partial x_N} \leftarrow 1\\ \text{for } i = N - 1, N - 2, \dots, 2, 1 \text{ do}\\ \text{if } i > n \text{ then}\\ \text{for } k \in S_i \text{ do}\\ \text{Compute and store } \frac{\partial g_i(x_{S_i})}{\partial x_k}\\ \text{end for}\\ \text{end if}\\ \frac{\partial x_N}{\partial x_i} \leftarrow \sum_{j:i \in S_j} \frac{\partial x_N}{\partial x_i} \frac{\partial g_j(x_{S_j})}{\partial x_i}\\ \text{end for} \end{array}$$

At the end we obtain

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

What's the computational cost to compute a gradient?

What's the computational cost to compute a gradient?

- O(1) function evaluations! (c.f. O(n) for finite differences)
- O(#operations) storage

$f(x_1, x_2) = \sin(x_1) \exp(x_2)$

function $f(x_1, x_2)$ $x_3 \leftarrow \sin(x_1)$ $x_4 \leftarrow \exp(x_2)$ $x_5 \leftarrow x_3 * x_4$ return x_5 end function

function $\nabla f(x_1, x_2)$ $x_3 \leftarrow \sin(x_1)$ $x_4 \leftarrow \exp(x_2)$ $X_5 \leftarrow X_3 * X_4$ $z_5 \leftarrow 1$ $Z_4 \leftarrow X_3$ $Z_3 \leftarrow X_4$ $z_2 \leftarrow z_4 \exp(x_2)$ $z_1 \leftarrow z_3 \cos(x_1)$ return (z_1, z_2) end function

$$Z_i := \frac{\partial x_i}{\partial x_i}$$

- Usually implemented by interpreting each instruction

- Usually implemented by *interpreting* each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)

- Usually implemented by *interpreting* each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)
 - \circ In Julia, implementation easy but compilation time was prohibitive, so we now "interpret" expressions (ReverseDiffSparse v0.3 → v0.5)

- Usually implemented by *interpreting* each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL's nlc)
 - $\circ~$ In Julia, implementation easy but compilation time was prohibitive, so we now "interpret" expressions (ReverseDiffSparse v0.3 \rightarrow v0.5)
 - See also ReverseDiffSource.jl

Recall each operation g_i is associated with a set S_i – list of inputs. Useful to think of operations as *nodes in a graph*, inputs as children. Example: $sin(x_1) cos(x_2)$

Call this expression tree (or expression graph).

- JuMP's expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC'd objects floating around is not great for performance in Julia

- JuMP's expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC'd objects floating around is not great for performance in Julia

- Graphs and LightGraphs use Vector{Vector} for list of children.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (conversion code)

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. "tapes")

That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (conversion code)

Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

JuMP uses **forward-mode AD** (see Jarrett's talk next) for:

- Second-order derivatives, composed with reverse mode
- Gradients of user-defined functions

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(\mathbf{x})_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

.

$$abla^2 f(x)_{ij} = rac{\partial^2 f}{\partial x_i \partial x_j}.$$

Hessian-vector product $\nabla^2 f(x)d$ is directional derivative of $\nabla f(x)$, can compute in O(1) evaluations of f using forward mode ad composed with reverse mode.

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \dots, 1)$ to "recover" all nonzero entries of $\nabla^2 f(x)$.

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \dots, 1)$ to "recover" all nonzero entries of $\nabla^2 f(x)$.

In general, what is the smallest number of Hessian-vector products needed to recover all nonzero elements of $\nabla^2 f(x)$?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
- We implement the coloring heuristic of Gebremedhin et al (2009).

```
function squareroot(x)
    z = x # Initial starting point for Newton's method
    while abs(z*z - x) > 1e-13
        z = z - (z \cdot z - x)/(2z)
    end
    return z
end
JuMP.register(:squareroot, 1, squareroot, autodiff=true)
m = Model()
@variable(m, x[1:2], start=0.5)
@objective(m, Max, sum(x))
@NLconstraint(m, squareroot(x[1]^2+x[2]^2) <= 1)</pre>
solve(m)
```

Limitations:

- Function must accept generic number type, follow guidelines for ForwardDiff.jl
- No Hessians yet
- Low-dimensional functions only, no vector input

Model generation time: Time between user pressing enter and solver starting

Function evaluation time: Time evaluating derivatives

Total CPU secs in IPOPT (w/o function evaluations) = 224.725 Total CPU secs in NLP function evaluations = 29.510

Performance goal: Don't be the bottleneck!

```
alpha = 350
h = 1/N
m = Model()
@variable(m, -1 <= t[1:(N+1)] <= 1)</pre>
@variable(m, -0.05 <= x[1:(N+1)] <= 0.05)</pre>
@variable(m, u[1:(N+1)])
@NLobjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) +
                           0.5*alpha*h*(cos(t[i+1]) +
                              cos(t[i])), i=1:N})
@NLconstraint(m, cons1[i=1:N],
    x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)
@constraint(m, cons2[i=1:N],
    t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0)
```

Table: Model generation time (sec.)

		Commercial		Open-source	
Instance	JuMP	AMPL	GAMS	Pyomo	YALMIP
clnlbeam-5	12	0	0	5	76
clnlbeam-50	14	2	3	44	>600
clnlbeam-500	38	22	35	453	>600
acpower-1	18	0	0	3	-
acpower-10	21	1	2	26	-
acpower-100	66	14	16	261	-

clnlbeam has diagonal Hessian, acpower complex hessian structure.

Pyomo uses AMPL's open-source AD library. YALMIP pure MATLAB.

Table: Time (sec.) to evaluate derivatives (including gradients, Jacobians, and Hessians) during 3 iterations, as reported by Ipopt.

		Commercial		
Instance	JuMP	AMPL	GAMS	
clnlbeam-5	0.03	0.03	0.09	
clnlbeam-50	0.39	0.34	0.74	
clnlbeam-500	4.72	3.40	15.69	
acpower-1	0.07	0.02	0.06	
acpower-10	0.66	0.30	0.53	
acpower-100	6.11	3.20	18.13	

Thank you to Julia developers, JuliaOpt contributors, JuMP users, JuliaCon organizers, and the audience!

More on AD in JuMP: http://arxiv.org/abs/1508.01982

Explanation of reverse mode inspired by Justin Domke's blog post