
automatic differentiation techniques used in
jump

Miles Lubin, Iain Dunning, and Joey Huchette
June 22, 2016

MIT Operations Research Center

1 / 36

- Solver-independent, fast, extensible, open-source algebraic
modeling language for Mathematical Programming embedded
in Julia
◦ cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

http://www.juliaopt.org/

2 / 36

http://www.juliaopt.org/

nonlinear modeling

min f(x)
s.t. g(x) ≤ 0

- User inputs “closed-form” expressions for f and g
- Modeling language communicates with solver to provide
derivatives
◦ Traditionally, Hessian of Lagrangian:

∇2f(x) +
∑
i
λi∇2g(x)

3 / 36

http://nbviewer.ipython.org/github/JuliaOpt/
juliaopt-notebooks/blob/master/notebooks/
JuMP-Rocket.ipynb

4 / 36

http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/JuMP-Rocket.ipynb
http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/JuMP-Rocket.ipynb
http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/master/notebooks/JuMP-Rocket.ipynb

Julia Code
m = Model()
@variable(m, x[1:N])
@NLconstraint(m, sin(x[1]) <= 0.5)

JuMP

Solver
(Ipopt, Knitro, NLopt,

Mosek, ...)

Optimal solution x∗

ForwardDiff
ReverseDiffSparse

f(x),∇f(x),∇2f(x), . . .

5 / 36

overview

Will discuss how JuMP computes derivatives: algorithms and data
structures.
Related work:

- Machine Learning: TensorFlow, Torch, etc.
- Statistics: Stan
- PDEs: FEniCS, UFL
- Control: CasADi

6 / 36

methods for computing derivatives

- Symbolic
◦ Does not scale well, especially to second-order derivatives

- Automatic Differentiation (AD)
◦ Reverse mode
◦ Forward mode

7 / 36

reverse mode ad in 2 slides

Assume function f is given in the form,
function f(x1, x2, . . . , xn)

for i = n+ 1,n+ 2, . . . ,N do
xi ← gi(xSi)

end for
return xN

end function

- Si – input to ith operation, subset of {1, 2, . . . , i− 1}, (|Si| ≤ 2)
- gi – “basic” operation: +, ∗, sqrt, sin, exp, log, . . .

Then
∂f(x)
∂xi

=
∂xN
∂xi

=
∑
j:i∈Sj

∂xN
∂xj

∂gj(xSj)
∂xi

8 / 36

Note i ∈ Sj implies j > i, which means that we can compute all
partials by running the function in reverse:

∂xN
∂xN ← 1
for i = N− 1,N− 2, . . . , 2, 1 do

if i > n then
for k ∈ Si do

Compute and store ∂gi(xSi)
∂xk

end for
end if
∂xN
∂xi ←

∑
j:i∈Sj

∂xN
∂xj

∂gj(xSj)
∂xi

end for

At the end we obtain

∇f(x) =
(

∂f
∂x1

,
∂f
∂x2

, · · · , ∂f
∂xn

)

9 / 36

What’s the computational cost to compute a gradient?

- O(1) function evaluations! (c.f. O(n) for finite differences)
- O(#operations) storage

10 / 36

What’s the computational cost to compute a gradient?

- O(1) function evaluations! (c.f. O(n) for finite differences)
- O(#operations) storage

11 / 36

example

f(x1, x2) = sin(x1) exp(x2)

function f(x1, x2)
x3 ← sin(x1)
x4 ← exp(x2)
x5 ← x3 ∗ x4
return x5

end function

12 / 36

function ∇f(x1, x2)
x3 ← sin(x1)
x4 ← exp(x2)
x5 ← x3 ∗ x4
z5 ← 1
z4 ← x3
z3 ← x4
z2 ← z4 exp(x2)
z1 ← z3 cos(x1)
return (z1, z2)

end function

zi := ∂x5
∂xi

13 / 36

One can view reverse-mode AD as a method for transforming code
to compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

- Usually implemented by interpreting each instruction

- Why not just generate new code and compile it instead?

◦ Let compiler optimize, essentially as fast as hand-written
derivatives

◦ Not a new idea, but historically hard to implement and
difficult to use (e.g., AMPL’s nlc)

◦ In Julia, implementation easy but compilation time was
prohibitive, so we now “interpret” expressions
(ReverseDiffSparse v0.3→ v0.5)

◦ See also ReverseDiffSource.jl

14 / 36

One can view reverse-mode AD as a method for transforming code
to compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
◦ Let compiler optimize, essentially as fast as hand-written
derivatives

◦ Not a new idea, but historically hard to implement and
difficult to use (e.g., AMPL’s nlc)

◦ In Julia, implementation easy but compilation time was
prohibitive, so we now “interpret” expressions
(ReverseDiffSparse v0.3→ v0.5)

◦ See also ReverseDiffSource.jl

15 / 36

One can view reverse-mode AD as a method for transforming code
to compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
◦ Let compiler optimize, essentially as fast as hand-written
derivatives

◦ Not a new idea, but historically hard to implement and
difficult to use (e.g., AMPL’s nlc)

◦ In Julia, implementation easy but compilation time was
prohibitive, so we now “interpret” expressions
(ReverseDiffSparse v0.3→ v0.5)

◦ See also ReverseDiffSource.jl

16 / 36

One can view reverse-mode AD as a method for transforming code
to compute a function f : Rn → R into code to compute the gradient
function ∇f : Rn → Rn.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
◦ Let compiler optimize, essentially as fast as hand-written
derivatives

◦ Not a new idea, but historically hard to implement and
difficult to use (e.g., AMPL’s nlc)

◦ In Julia, implementation easy but compilation time was
prohibitive, so we now “interpret” expressions
(ReverseDiffSparse v0.3→ v0.5)

◦ See also ReverseDiffSource.jl

17 / 36

jump’s reverse-mode implementation

Recall each operation gi is associated with a set Si – list of inputs.
Useful to think of operations as nodes in a graph, inputs as children.
Example: sin(x1) cos(x2)

*

cos

x2

sin

x1

Call this expression tree (or expression graph).

18 / 36

data structure for expression trees

- JuMP’s expression trees (loops unrolled) can easily have
millions of nodes

- May have thousands of such constraints in a given optimization
problem

- Billions of long-lived GC’d objects floating around is not great
for performance in Julia

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.

- Graphs and LightGraphs use Vector{Vector} for list of
children.

19 / 36

data structure for expression trees

- JuMP’s expression trees (loops unrolled) can easily have
millions of nodes

- May have thousands of such constraints in a given optimization
problem

- Billions of long-lived GC’d objects floating around is not great
for performance in Julia

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.

- Graphs and LightGraphs use Vector{Vector} for list of
children.

20 / 36

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores
the index to its parent. Order the vector so that a linear pass
corresponds to running function forward or backward. (c.f. “tapes”)
That form makes it easy to access parents but not list of children.
Use a CSC sparse matrix with children on the columns (adjacency
matrix). (conversion code)
Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

21 / 36

https://github.com/mlubin/ReverseDiffSparse.jl/blob/758f0daa96a64bf26f2a25253915e4c26d51c7bc/src/conversion.jl#L63

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.
Solution: Use a single vector of immutables. Each element stores
the index to its parent. Order the vector so that a linear pass
corresponds to running function forward or backward. (c.f. “tapes”)

That form makes it easy to access parents but not list of children.
Use a CSC sparse matrix with children on the columns (adjacency
matrix). (conversion code)
Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

22 / 36

https://github.com/mlubin/ReverseDiffSparse.jl/blob/758f0daa96a64bf26f2a25253915e4c26d51c7bc/src/conversion.jl#L63

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.
Solution: Use a single vector of immutables. Each element stores
the index to its parent. Order the vector so that a linear pass
corresponds to running function forward or backward. (c.f. “tapes”)
That form makes it easy to access parents but not list of children.
Use a CSC sparse matrix with children on the columns (adjacency
matrix). (conversion code)

Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

23 / 36

https://github.com/mlubin/ReverseDiffSparse.jl/blob/758f0daa96a64bf26f2a25253915e4c26d51c7bc/src/conversion.jl#L63

Problem: Design an efficient data structure for expression trees
with a constant number of GC’d objects, regardless of size of tree.
Solution: Use a single vector of immutables. Each element stores
the index to its parent. Order the vector so that a linear pass
corresponds to running function forward or backward. (c.f. “tapes”)
That form makes it easy to access parents but not list of children.
Use a CSC sparse matrix with children on the columns (adjacency
matrix). (conversion code)
Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC

24 / 36

https://github.com/mlubin/ReverseDiffSparse.jl/blob/758f0daa96a64bf26f2a25253915e4c26d51c7bc/src/conversion.jl#L63

forward-mode ad

JuMP uses forward-mode AD (see Jarrett’s talk next) for:

- Second-order derivatives, composed with reverse mode
- Gradients of user-defined functions

25 / 36

computing hessians

Efficient interior-point solvers (Ipopt, ...) need the n× n Hessian
matrix:

∇2f(x)ij =
∂2f

∂xi∂xj
.

Hessian-vector product ∇2f(x)d is directional derivative of ∇f(x),
can compute in O(1) evaluations of f using forward mode ad
composed with reverse mode.

26 / 36

computing hessians

Efficient interior-point solvers (Ipopt, ...) need the n× n Hessian
matrix:

∇2f(x)ij =
∂2f

∂xi∂xj
.

Hessian-vector product ∇2f(x)d is directional derivative of ∇f(x),
can compute in O(1) evaluations of f using forward mode ad
composed with reverse mode.

27 / 36

exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate ∇2f(x)d with vector d = (1, · · · , 1)
to “recover” all nonzero entries of ∇2f(x).

In general, what is the smallest number of Hessian-vector products
needed to recover all nonzero elements of ∇2f(x)?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai,
1986)

- We implement the coloring heuristic of Gebremedhin et al
(2009).

28 / 36

exploiting sparsity

Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate ∇2f(x)d with vector d = (1, · · · , 1)
to “recover” all nonzero entries of ∇2f(x).

In general, what is the smallest number of Hessian-vector products
needed to recover all nonzero elements of ∇2f(x)?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai,
1986)

- We implement the coloring heuristic of Gebremedhin et al
(2009).

29 / 36

user-defined functions

function squareroot(x)
z = x # Initial starting point for Newton’s method
while abs(z*z - x) > 1e-13

z = z - (z*z-x)/(2z)
end
return z

end
JuMP.register(:squareroot, 1, squareroot, autodiff=true)

m = Model()
@variable(m, x[1:2], start=0.5)
@objective(m, Max, sum(x))
@NLconstraint(m, squareroot(x[1]^2+x[2]^2) <= 1)
solve(m)

30 / 36

Limitations:

- Function must accept generic number type, follow guidelines
for ForwardDiff.jl

- No Hessians yet
- Low-dimensional functions only, no vector input

31 / 36

benchmarks

Model generation time: Time between user pressing enter and
solver starting

Function evaluation time: Time evaluating derivatives

Total CPU secs in IPOPT (w/o function evaluations) = 224.725
Total CPU secs in NLP function evaluations = 29.510

Performance goal: Don’t be the bottleneck!

32 / 36

clnlbeam model

alpha = 350
h = 1/N

m = Model()

@variable(m, -1 <= t[1:(N+1)] <= 1)
@variable(m, -0.05 <= x[1:(N+1)] <= 0.05)
@variable(m, u[1:(N+1)])

@NLobjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) +
0.5*alpha*h*(cos(t[i+1]) +

cos(t[i])), i=1:N})

@NLconstraint(m, cons1[i=1:N],
x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)

@constraint(m, cons2[i=1:N],
t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0)

33 / 36

Table: Model generation time (sec.)

Commercial Open-source
Instance JuMP AMPL GAMS Pyomo YALMIP
clnlbeam-5 12 0 0 5 76
clnlbeam-50 14 2 3 44 Ѻ600
clnlbeam-500 38 22 35 453 Ѻ600
acpower-1 18 0 0 3 -
acpower-10 21 1 2 26 -
acpower-100 66 14 16 261 -

clnlbeam has diagonal Hessian, acpower complex hessian
structure.
Pyomo uses AMPL’s open-source AD library. YALMIP pure MATLAB.

34 / 36

Table: Time (sec.) to evaluate derivatives (including gradients, Jacobians,
and Hessians) during 3 iterations, as reported by Ipopt.

Commercial
Instance JuMP AMPL GAMS
clnlbeam-5 0.03 0.03 0.09
clnlbeam-50 0.39 0.34 0.74
clnlbeam-500 4.72 3.40 15.69
acpower-1 0.07 0.02 0.06
acpower-10 0.66 0.30 0.53
acpower-100 6.11 3.20 18.13

35 / 36

Thank you to Julia developers, JuliaOpt contributors, JuMP users,
JuliaCon organizers, and the audience!

More on AD in JuMP:
http://arxiv.org/abs/1508.01982

Explanation of reverse mode inspired by Justin Domke’s blog post

36 / 36

http://arxiv.org/abs/1508.01982
https://justindomke.wordpress.com/2009/03/24/a-simple-explanation-of-reverse-mode-automatic-differentiation/

