AUTOMATIC DIFFERENTIATION TECHNIQUES USED IN JUMP

Miles Lubin, Iain Dunning, and Joey Huchette

June 22, 2016

MIT Operations Research Center
- Solver-independent, fast, extensible, open-source algebraic modeling language for Mathematical Programming embedded in Julia
 o cf. AMPL, GAMS, Pyomo, PuLP, YALMIP, ...

http://www.juliaopt.org/
min \quad f(x) \\
\text{s.t.} \quad g(x) \leq 0

- User inputs “closed-form” expressions for f and g
- Modeling language communicates with solver to provide derivatives
 - Traditionally, Hessian of Lagrangian:
 \[\nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g(x) \]
Julia Code

```julia
m = Model()
@variable(m, x[1:N])
@NLconstraint(m, sin(x[1]) <= 0.5)
```

JuMP

Solver
(Ipopt, Knitro, NLopt, Mosek, ...)

ForwardDiff
ReverseDiffSparse

\[f(x), \nabla f(x), \nabla^2 f(x), \ldots \]

Optimal solution \(x^* \)
Will discuss how JuMP computes derivatives: algorithms and data structures.

Related work:

- Machine Learning: TensorFlow, Torch, etc.
- Statistics: Stan
- PDEs: FEniCS, UFL
- Control: CasADi
METHODS FOR COMPUTING DERIVATIVES

- Symbolic
 - Does not scale well, especially to second-order derivatives
- Automatic Differentiation (AD)
 - Reverse mode
 - Forward mode
Assume function f is given in the form,

```plaintext
function $f(x_1, x_2, \ldots, x_n)$
    for $i = n + 1, n + 2, \ldots, N$ do
        $x_i \leftarrow g_i(x_{S_i})$
    end for
    return $x_N$
end function
```

- S_i – input to ith operation, subset of $\{1, 2, \ldots, i - 1\}$, ($|S_i| \leq 2$)
- g_i – “basic” operation: +, *, sqrt, sin, exp, log, …

Then

$$\frac{\partial f(x)}{\partial x_i} = \frac{\partial x_N}{\partial x_i} = \sum_{j: i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i}$$
Note $i \in S_j$ implies $j > i$, which means that we can **compute all partials** by running the function in reverse:

\[
\frac{\partial x_N}{\partial x_N} \leftarrow 1 \\
\text{for } i = N - 1, N - 2, \ldots, 2, 1 \text{ do} \\
\quad \text{if } i > n \text{ then} \\
\quad \quad \text{for } k \in S_i \text{ do} \\
\quad \quad \quad \text{Compute and store } \frac{\partial g_i(x_{S_i})}{\partial x_k} \\
\quad \quad \text{end for} \\
\quad \text{end if} \\
\quad \frac{\partial x_N}{\partial x_i} \leftarrow \sum_{j:i \in S_j} \frac{\partial x_N}{\partial x_j} \frac{\partial g_j(x_{S_j})}{\partial x_i} \\
\text{end for}
\]

At the end we obtain

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]
What’s the computational cost to compute a gradient?
What’s the computational cost to compute a gradient?

- $O(1)$ function evaluations! (c.f. $O(n)$ for finite differences)
- $O(\#operations)$ storage
\[f(x_1, x_2) = \sin(x_1) \exp(x_2) \]

```
function f(x_1, x_2)
    x_3 ← \sin(x_1)
    x_4 ← \exp(x_2)
    x_5 ← x_3 \ast x_4
    return x_5
end function
```
function $\nabla f(x_1, x_2)$

$\begin{align*}
x_3 & \leftarrow \sin(x_1) \\
x_4 & \leftarrow \exp(x_2) \\
x_5 & \leftarrow x_3 \ast x_4 \\
z_5 & \leftarrow 1 \\
z_4 & \leftarrow x_3 \\
z_3 & \leftarrow x_4 \\
z_2 & \leftarrow z_4 \exp(x_2) \\
z_1 & \leftarrow z_3 \cos(x_1) \\
\text{return} \ (z_1, z_2)
\end{align*}$

end function

$z_i := \frac{\partial x_5}{\partial x_i}$
One can view reverse-mode AD as a method for *transforming code* to compute a function $f : \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

- Usually implemented by *interpreting* each instruction
One can view reverse-mode AD as a method for transforming code to compute a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) into code to compute the gradient function \(\nabla f : \mathbb{R}^n \rightarrow \mathbb{R}^n \).

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL’s nlc)
One can view reverse-mode AD as a method for \textit{transforming code} to compute a function $f : \mathbb{R}^n \to \mathbb{R}$ into code to compute the gradient function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

- Usually implemented by \textit{interpreting} each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL’s nlc)
 - In Julia, implementation easy but compilation time was prohibitive, so we now “interpret” expressions (ReverseDiffSparse v0.3 \to v0.5)
One can view reverse-mode AD as a method for transforming code to compute a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ into code to compute the gradient function $\nabla f : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

- Usually implemented by interpreting each instruction
- Why not just generate new code and compile it instead?
 - Let compiler optimize, essentially as fast as hand-written derivatives
 - Not a new idea, but historically hard to implement and difficult to use (e.g., AMPL’s nlc)
 - In Julia, implementation easy but compilation time was prohibitive, so we now “interpret” expressions (ReverseDiffSparse v0.3 → v0.5)
 - See also ReverseDiffSource.jl
Recall each operation g_i is associated with a set S_i – list of inputs. Useful to think of operations as *nodes in a graph*, inputs as children.

Example: $\sin(x_1) \cos(x_2)$

Call this *expression tree* (or *expression graph*).
- JuMP’s expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC’d objects floating around is not great for performance in Julia
- JuMP’s expression trees (loops unrolled) can easily have millions of nodes
- May have thousands of such constraints in a given optimization problem
- Billions of long-lived GC’d objects floating around is not great for performance in Julia

Problem: Design an efficient data structure for expression trees with a constant number of GC’d objects, regardless of size of tree.

- Graphs and LightGraphs use Vector{Vector} for list of children.
Problem: Design an efficient data structure for expression trees with a constant number of GC’d objects, regardless of size of tree.

Solution:

Use a single vector of immutable s. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. “tapes”) That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (conversion code) Final data structure per expression tree:

- Vector of immutable s
- SparseMatrixCSC
Problem: Design an efficient data structure for expression trees with a constant number of GC’d objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. “tapes”)
Problem: Design an efficient data structure for expression trees with a constant number of GC’d objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. “tapes”) That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). (**conversion code**)
Problem: Design an efficient data structure for expression trees with a constant number of GC’d objects, regardless of size of tree.

Solution: Use a single vector of immutables. Each element stores the index to its parent. Order the vector so that a linear pass corresponds to running function forward or backward. (c.f. “tapes”) That form makes it easy to access parents but not list of children. Use a CSC sparse matrix with children on the columns (adjacency matrix). ([conversion code](#))

Final data structure per expression tree:

- Vector of immutables
- SparseMatrixCSC
JuMP uses **forward-mode AD** (see Jarrett’s talk next) for:

- Second-order derivatives, composed with reverse mode
- Gradients of user-defined functions
Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$
Efficient interior-point solvers (Ipopt, ...) need the $n \times n$ Hessian matrix:

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Hessian-vector product $\nabla^2 f(x)d$ is directional derivative of $\nabla f(x)$, can compute in $O(1)$ evaluations of f using forward mode ad composed with reverse mode.
Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \cdots, 1)$ to “recover” all nonzero entries of $\nabla^2 f(x)$.
Usually Hessian matrix is very sparse.

If diagonal, just need to evaluate $\nabla^2 f(x)d$ with vector $d = (1, \cdots, 1)$ to “recover” all nonzero entries of $\nabla^2 f(x)$.

In general, what is the smallest number of Hessian-vector products needed to recover all nonzero elements of $\nabla^2 f(x)$?

- Acyclic graph coloring problem, NP-Hard (Coleman and Cai, 1986)
- We implement the coloring heuristic of Gebremedhin et al (2009).
function squareroot(x)
 z = x # Initial starting point for Newton’s method
 while abs(z*z - x) > 1e-13
 z = z - (z*z-x)/(2z)
 end
 return z
end

JuMP.register(:squareroot, 1, squareroot, autodiff=true)

m = Model()
@variable(m, x[1:2], start=0.5)
@objective(m, Max, sum(x))
@NLconstraint(m, squareroot(x[1]^2+x[2]^2) <= 1)
solve(m)
Limitations:

- Function must accept generic number type, follow guidelines for ForwardDiff.jl
- No Hessians yet
- Low-dimensional functions only, no vector input
Model generation time: Time between user pressing enter and solver starting

Function evaluation time: Time evaluating derivatives

Total CPU secs in IPOPT (w/o function evaluations) = 224.725
Total CPU secs in NLP function evaluations = 29.510

Performance goal: **Don’t be the bottleneck!**
alpha = 350
h = 1/N

m = Model()

@variable(m, -1 <= t[1:(N+1)] <= 1)
@variable(m, -0.05 <= x[1:(N+1)] <= 0.05)
@variable(m, u[1:(N+1)])

@NLobjective(m, Min, sum{ 0.5*h*(u[i+1]^2+u[i]^2) +
 0.5*alpha*h*(cos(t[i+1]) +
 cos(t[i])), i=1:N})

@NLconstraint(m, cons1[i=1:N],
 x[i+1] - x[i] - 0.5*h*(sin(t[i+1])+sin(t[i])) == 0)
@constraint(m, cons2[i=1:N],
 t[i+1] - t[i] - (0.5h)*u[i+1] - (0.5h)*u[i] == 0)
<table>
<thead>
<tr>
<th>Instance</th>
<th>JuMP</th>
<th>Commercial</th>
<th>Open-source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMPL</td>
<td>GAMS</td>
</tr>
<tr>
<td>clnlbeam-5</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>clnlbeam-50</td>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>clnlbeam-500</td>
<td>38</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>acpower-1</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acpower-10</td>
<td>21</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>acpower-100</td>
<td>66</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

clnlbeam has diagonal Hessian, *acpower* complex hessian structure.

Pyomo uses AMPL’s open-source AD library. YALMIP pure MATLAB.
Table: Time (sec.) to evaluate derivatives (including gradients, Jacobians, and Hessians) during 3 iterations, as reported by Ipopt.

<table>
<thead>
<tr>
<th>Instance</th>
<th>JuMP</th>
<th>AMPL</th>
<th>GAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>clnlbeam-5</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>clnlbeam-50</td>
<td>0.39</td>
<td>0.34</td>
<td>0.74</td>
</tr>
<tr>
<td>clnlbeam-500</td>
<td>4.72</td>
<td>3.40</td>
<td>15.69</td>
</tr>
<tr>
<td>acpower-1</td>
<td>0.07</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>acpower-10</td>
<td>0.66</td>
<td>0.30</td>
<td>0.53</td>
</tr>
<tr>
<td>acpower-100</td>
<td>6.11</td>
<td>3.20</td>
<td>18.13</td>
</tr>
</tbody>
</table>
Thank you to Julia developers, JuliaOpt contributors, JuMP users, JuliaCon organizers, and the audience!

More on AD in JuMP:
http://arxiv.org/abs/1508.01982

Explanation of reverse mode inspired by Justin Domke’s blog post