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First, Mixed-integer linear programming (MILP),

min
x

cTx

subject to Ax = b,
x ≥ 0,
xi ∈ Z, ∀i ∈ I

- Despite NP-Hardness, many problems of practical interest can
be solved to optimality or near optimality

- Algorithms are based on LP relaxations, branch & bound, cuts,
preprocessing, heuristics, ...

- 50+ years of commercial investment in developing these
techniques
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who uses milp?

http://www.gurobi.com/company/example-customers
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example: unit commitment

Minimize unit-production costs + fixed operating costs
subject to:

- Total generation = total demand, hourly over 24h
- Generation and transmission limits

◦ If a generator is on, it produces within some interval [l,u],
otherwise its production is zero

- Linear approximation of nonlinear powerflow laws

1% reduction in generation gives billions of dollars per year cost
reduction. Worth spending time to improve optimality.
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example: sparse linear regression

min
x

||Ax− b||2
subject to ||x||0 ≤ k,

Suppose we know optimal solution satisfies ||x||∞ ≤ M. We have an
equivalent mixed-integer quadratic formulation

min
x,y

||Ax− b||2

subject to
∑

yi ≤ k,
xi ≤ Myi
xi ≥ −Myi
y ∈ {0, 1}n
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example: sparse linear regression

min
x

||Ax− b||2
subject to ||x||0 ≤ k,

These are solvable up to 1000s of dimensions using modern
commercial solvers (Bertsimas and King, 2016).
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example: experimental design

We take m measurements yi by performing a set of experiments ai,

yi = aTi x+ ϵi

with noise ϵi independent standard Gaussian.
Standard confidence set for x ∈ Rn has form

{z|(z− x̂)TE−1(z− x̂) ≤ β}

where x̂ is the maximum likelihood estimate of x,

E =

( m∑
i=1

aiaTi

)−1

,

and β depends on n confidence level α.
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example: experimental design

Say we want to choose experiments ai in an optimal way from a set
of potential experiments v1, v2, . . . , vp. Introduce an integer variable
mj counting how many times we perform experiment vj. Then

E =

 p∑
j=1

mjvjvTj

−1

.

We could choose to minimize the volume of the confidence
ellipsoid,

max
m

det(E−1)

subject to
∑

mj = k,
m ≥ 0,
m ∈ Zn.
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example: experimental design

max
m

det(E−1)

subject to
∑

mj = k,
m ≥ 0,
m ∈ Zn.

becomes

max
m

log(det(E−1))

subject to
∑

mj = k,
m ≥ 0,
m ∈ Zn.

- Convex optimization problem when we relax integrality
- Boyd (Ch. 7.5) proposes to solve convex relaxation and round,
but maybe we can solve the original problem to optimality!
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Mixed-integer convex programming (MICP),

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

Objective function f and constraints gj convex
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what can be modeled using micp?

Disjunctions/unions of compact convex sets (Stubbs and Mehrotra,
1999)

{x : f1(x) ≤ 0 or f2(x) ≤ 0}

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

10



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x belongs to the convex hull iff ∃ u1,u2, λ1, λ2 such that
x = λ1u1 + λ2u2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(u1) ≤ 0
f2(u2) ≤ 0
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x = λ1u1 + λ2u2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(u1) ≤ 0
f2(u2) ≤ 0

- If we impose λ1, λ2 ∈ {0, 1} then have conditions for the union,
but not convex

- Instead, introduce z1 = λ1u1, z2 = λ2u2
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x = z1 + z2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(z1/λ1) ≤ 0
f2(z2/λ2) ≤ 0

- Still not convex
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x = z1 + z2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
λ1f1(z1/λ1) ≤ 0
λ2f2(z2/λ2) ≤ 0
λ1, λ2 ∈ {0, 1}

- Perspective function of any convex function is convex.
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- Which nonconvex sets can be modeled with MICP? Finite unions
of compact, convex sets

Conjecture: the following set is not MICP representable
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State of the art for solving MICP

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z,∀i ∈ I

- f,gj convex, smooth
- Bonmin, KNITRO, α-ECP, DICOPT, FilMINT, MINLP_BB, SBB, ...
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outer approximation algorithm

Idea: Solve an alternating sequence of MILP and convex problems
using existing, good solvers.
Given points x∗1 , . . . , x∗R, solve mixed-integer linear relaxation:

min
x

t

subject to gj(x∗r ) +∇gj(x∗r )T(x− x∗r ) ≤ 0, ∀j, r = 1, . . . ,R
f(x∗r ) +∇f(x∗r )T(x− x∗r ) ≤ t, r = 1, . . . ,R
xi ∈ Z, ∀i ∈ I

Then solve convex problem with integer values fixed to get a new
feasible solution, and repeat with R = R+ 1.
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not good enough...

[...] solution algorithms for [MICP] have benefit from the
technological progress made in solving MILP and NLP.
However, in the realm of [MICP], the progress has been far
more modest, and the dimension of solvable [MICP] by
current solvers is small when compared to MILPs and NLPs.

– Bonami, Kilinç, and Linderoth (2012)
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what can go wrong?

Classical approaches form polyhedral outer approximations by a
finite collection of “gradient linearizations”. But a good polyhedral
outer approximation might need too many linear constraints.
Recall:

B1 := {x : ||x||1 ≤ 1} =

{
x :

n∑
i=1

sixi ≤ 1, s ∈ {−1,+1}n
}
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B1 := {x : ||x||1 ≤ 1} =

{
x :

n∑
i=1

sixi ≤ 1, s ∈ {−1,+1}n
}

Standard trick in linear programming is to introduce extra variables:

B1 =
{
x ∈ Rn : ∃ y ∈ Rn s.t. x ≤ y, x ≥ −y,

∑
i
yi ≤ 1

}
The new formulation has 2n variables and 2n+ 1 constraints versus
n variables and 2n constraints. Not bad.
We call this an extended formulation.
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the same happens with smooth constraints

Hijazi et al. (2014):

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4
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- Bn is empty
- No outer approximating hyperplane can exclude more than one
integer lattice point

- So any polyhedral outer approximation which contains no
integer vertices needs at least 2n hyperplanes
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how to fix it?

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4


Consider the equivalent formulation in an extended set of variables:

B̂n :=

x ∈ {0, 1}n, z ∈ Rn :
n∑
j=1

zj ≤
n− 1
4 ,

(
xj −

1
2

)2
≤ zj ∀j


- Bn = projx B̂n

- If you form a polyhedral relaxation of each
(
xj − 1

2
)2 ≤ zj

individually, then 2n hyperplanes in R2n is sufficient to exclude
all integer points

- Outer approximation algorithm now converges in 2 iterations
- Why? Small polyhedron in higher dimension can have
exponentially many facets in lower dimension

23



how to fix it?

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4


Consider the equivalent formulation in an extended set of variables:

B̂n :=

x ∈ {0, 1}n, z ∈ Rn :
n∑
j=1

zj ≤
n− 1
4 ,

(
xj −

1
2

)2
≤ zj ∀j


- Bn = projx B̂n

- If you form a polyhedral relaxation of each
(
xj − 1

2
)2 ≤ zj

individually, then 2n hyperplanes in R2n is sufficient to exclude
all integer points

- Outer approximation algorithm now converges in 2 iterations
- Why? Small polyhedron in higher dimension can have
exponentially many facets in lower dimension

23



how to fix it?

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4


Consider the equivalent formulation in an extended set of variables:

B̂n :=

x ∈ {0, 1}n, z ∈ Rn :
n∑
j=1

zj ≤
n− 1
4 ,

(
xj −

1
2

)2
≤ zj ∀j


- Bn = projx B̂n

- If you form a polyhedral relaxation of each
(
xj − 1

2
)2 ≤ zj

individually, then 2n hyperplanes in R2n is sufficient to exclude
all integer points

- Outer approximation algorithm now converges in 2 iterations

- Why? Small polyhedron in higher dimension can have
exponentially many facets in lower dimension

23



how to fix it?

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4


Consider the equivalent formulation in an extended set of variables:

B̂n :=

x ∈ {0, 1}n, z ∈ Rn :
n∑
j=1

zj ≤
n− 1
4 ,

(
xj −

1
2

)2
≤ zj ∀j


- Bn = projx B̂n

- If you form a polyhedral relaxation of each
(
xj − 1

2
)2 ≤ zj

individually, then 2n hyperplanes in R2n is sufficient to exclude
all integer points

- Outer approximation algorithm now converges in 2 iterations
- Why? Small polyhedron in higher dimension can have
exponentially many facets in lower dimension

23



“extended formulation for second-order cone”

SOCn := {(t, x) ∈ Rn : ||x||2 ≤ t}

Second order cone programming (SOCP) generalizes convex
quadratic programming (QP).

Vielma, Dunning, Huchette, Lubin (2015):

- For MISOCP: Rewrite ∑
i
x2i ≤ t2

as ∑
i
zi ≤ t, where zi ≥ x2i /t

- Implemented by CPLEX and Gurobi within months of
publication
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we know what to do...

Hijazi et al. (2014) propose to reformulate constraints of the form
n∑
i=1

gi(xi) ≤ 0

to
n∑
i=1

zi ≤ 0 and gi(xi) ≤ zi i = 1, . . . ,n,

where gi univariate, smooth, convex.

- Very impressive computational results
- Paper submitted in 2011, but there’s still no solver which
automates this transformation
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Why has nobody implemented this?

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

- MICP solvers view f and gj through “black-box” oracles for
evaluations of values and derivatives

- Summation structure not accessible through the “black box”
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Mixed-integer disciplined convex programming (MIDCP),

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

Objective function f and constraints gj disciplined convex
Forget about derivatives
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“Models with integer and binary variables must still obey
all of the same disciplined convex programming rules that
CVX enforces for continuous models. For this reason, we are
calling these models mixed-integer disciplined convex
programs or MIDCPs.“
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What is a disciplined convex function? (Grant, Boyd, Ye, 2006)

- Expressed as composition of basic atoms. Rules of composition
prove convexity.

- Example
√
x2 + y2 versus ||[x, y]||2,

√xy versus geomean(x, y).

Why disciplined convex?

- Functions expressed in this form can be automatically
converted to conic optimization problems. We have good
solvers and theory for conic optimization.
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conic optimization

min
x

cTx

s. t. Ax = b
x ∈ K

- K is a cone if x ∈ K implies αx ∈ K∀α ≥ 0
- Ususally we consider K = K1 × · · · × Ks where each Kj is one of
a small number of cones like Rn

+, SOCn, the cone of positive
semidefinite matrices...
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DCP

min
x

f(x)

s. t. gj(x) ≤ 0, ∀j

Conic

min
x

cTx

s. t. Ax = b
x ∈ K

Optimal solution x∗

CVX
CVXPY
Convex.jl

ECOS
SCS

Mosek
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Example: ∑
i
exp(cTi x+ bi) ≤ t

is expressed in conic form as∑
i
zi ≤ t and (cTi x+ bi, 1, zi) ∈ EXP.

where
EXP = cl{(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}

is the exponential cone.

The translation to conic form already produces a formulation with
additional variables ideal for polyhedral outer approximation.
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Example:
exp(x2 + y2) ≤ t

is DCP compliant. CVX will generate equivalent formulation

exp(z) ≤ t where x2 + y2 ≤ z

which is then translated to EXP and second-order cones.

- Tawarmalani and Sahinidis (2005) show that polyhedral outer
approximations that exploit composition structure have extra
strength. This comes for “free” with conic representations
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- Mixed-integer second order cone programming (MISOCP) has
rapidly improving commercial support by Gurobi/CPLEX
◦ Gurobi claims 2.8x improvement from version 6.0 to 6.5 (1
year)

- Otherwise (exponential cones, SDP), mainly research codes
(ecos_bb by Han Wang, 2014; SCIP-SDP by Mars, 2012)

- For MISOCP, no established open-source codes
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How general is MISOCP?
MINLPLIB2 benchmark library designed for derivative-based
mixed-integer nonlinear solvers. We classified all of the convex
instances by conic representability.
Of the 333 convex instances, 65% are MISOCP representable.

- tls6 instance previously unsolved. We translated it to
Convex.jl and it was solved by Gurobi!
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What about the remaining 35% of problems?
Of remaining 116 instances, in 107 the only nonlinear expressions
involve exp and log.

Recall the exponential cone:

EXP = cl{(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}

- Closed, convex, nonsymmetric cone. Theoretically tractable and
supported by ECOS (Akle, 2015)
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What about the remaining 9 of 333 instances?

- Seven representable by combination of EXP and second-order
cones (SOC)

- Two representable by the power cone

POWα = {(x, y, z) ∈ R3 : |z| ≤ xay1−a, x ≥ 0, y ≥ 0}
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Folklore: Almost all convex optimization problems of practical
interest can be represented as conic programming problems using
second-order, positive semidefinite, exponential, and power cones.
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So cones are general and provide a good extended formulation of
the original convex problem.
How do we apply polyhedral outer approximation to mixed-integer
conic problems?

- We’ll state the first finite-time outer approximation algorithm
for general mixed-integer conic optimization
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MIDCP

min
x

f(x)

s. t. gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

MICONE

min
x

cTx

s. t. Ax = b
x ∈ K

xi ∈ Z, ∀i ∈ I

Optimal solution x∗

CVX
CVXPY
Convex.jl

???
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mixed-integer conic programming

min
x,z

cTz

s.t. Axx+ Azz = b (MICONE)
L ≤ x ≤ U, x ∈ Zn, z ∈ K,

- K = K1 ×K2 × · · · × Kr, where each Ki is a standard cone:
nonnegative orthant, second-order cone, exponential cone,
power cone, or even positive semidefinite cone

- WLOG, integer variables do not belong to cones, have zero
objective coefficients
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Need to outer approximate cone K with finite number of linear
constraints...

Given a closed, convex cone K, the dual cone K∗ is the set such that
z ∈ K iff zTβ ≥ 0 ∀β ∈ K∗.

- Nonnegative orthant, second-order and positive semidefinite
cone are self dual. Exponential and power cones are not

- Any finite subset of K∗ yields a polyhedral outer approximation
of K!
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min
x,z

cTz

s.t. Axx+ Azz = b (MIOA(T))
L ≤ x ≤ U, x ∈ Zn,

βTz ≥ 0 ∀β ∈ T,

- If T = K∗, then equivalent to MICONE
- If T ⊆ K∗ and |T| < ∞, then polyhedral outer approximation →
MILP relaxation of MICONE

- Claim: ∃T ⊆ K∗, |T| < ∞ such that MIOA(T) is equivalent to
MICONE
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Consider the subproblem with integer values x = x̂ fixed:

vx̂ = min
z

cTz

s.t. Azz = b− Axx̂, (CP(x̂))
z ∈ K.

The dual of CP(x̂) is

max
β,λ

λT(b− Axx̂)

s.t. β = c− ATzλ
β ∈ K∗.
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the conic outer approximation algorithm

- Start with T = ∅ (or small)
- Until the optimal objective of MIOA(T) is ≥ the optimal
objective of the best feasible solution:
◦ Let x̂ be the optimal integer solution of the MILP problem
MIOA(T)

◦ Solve conic problem CP(x̂), add dual solution βx̂ to T
◦ If CP(x̂) was feasible, record new feasible solution to
MICONE

Finite termination assuming strong duality holds at subproblems
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the conic outer approximation algorithm

- Easy to implement, requires black box MILP and conic solvers
- Very often, number of iterations is < 10, sometimes 10-30.
Worst observed is 171.

- Each MILP subproblem could be NP-Hard, but takes advantage
of fast solvers
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vx̂ = min
z

cTz

s.t. Azz = b− Axx̂,
z ∈ K.

max
β,λ

λT(b− Axx̂)

s.t. β = c− ATzλ
β ∈ K∗.

Suppose CP(x̂) is feasible and strong duality holds at the optimal
primal-dual solution (zx̂, βx̂, λx̂). Then for any z with Azz = b− Axx̂
and βT

x̂z ≥ 0, we have cTz ≥ vx̂.

Including βT
x̂z ≥ 0 in polyhedral relaxation implies that if x = x̂ is the

optimal (integer part of the) solution of the relaxation, then the
objective value of the relaxation is at least vx̂.

Proof.

βT
x̂z = (c− ATzλx̂)

Tz = cTz− λT
x̂(b− Axx̂) = cTz− vx̂ ≥ 0.
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Claim: ∃T ⊆ K∗, |T| < ∞ such that MIOA(T) is equivalent to MICONE

Proof.

Solve CP(x̂) for all possible x̂ (finite). Then include all corresponding
dual vectors βx̂ in T. If x∗ is the integer solution of MIOA(T), then
CP(x∗) is feasible from the second lemma. From first lemma,
objective of MIOA(T) is at least the optimal value of CP(x∗), but it’s
also a relaxation so x∗ must be optimal.
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recap

- Polyhedral approximations can be made much better by
introducing extra variables

- Summation structure and compositions of convex functions
should be broken up

- Nobody automated this before! (Derivative-based view
prevents implementation)

- DCP to the rescue. Conic form is general and encodes the
information we need as a solver

- Proposed first outer approximation algorithm for MICONE,
based on conic duality
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Computational results
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Pajarito
New solver!

- 1000 lines of Julia
- Input is in conic form, accessible through Convex.jl DCP
language

- Works with any MILP and conic solvers supported in Julia
- For tough conic problems, also supports traditional nonlinear
solvers

- Released last week!
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Translated 194 convex instances from MINLPLIB2 from AMPL into
Convex.jl (heroic parsing work by E. Yamangil).
Compare with Bonmin’s outer approximation algorithm using CPLEX
as the MILP solver. We use the same version of CPLEX plus KNITRO
as NLP (conic) solver.
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(a) Solution time (b) Number of OA iterations

Figure: Comparison performance profiles for SOC representable instances
(Bonmin >30 sec)

- Dominates on iteration count. Haven’t optimized Pajarito so
Bonmin is faster on the easier problems.

- CPLEX is usually the fastest on MISOCPs. Use that instead.
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Almost none of the non-MISOCP instances in MINLPLIB2 are hard!
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gams01

gams01 unsolved instance which is EXP+SOC representable

- 145 variables. 1268 constraints (1158 are linear)
- Previous best bound: 1735.06. Best known solution: 21516.83
- Pajarito solved in 6 iterations (< 10 hours). Optimal solution is
21380.20.
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ongoing and future work

- Extensions to geometric programming and semidefinite
programming

- What happens when strong duality fails?
- Lots of room for improvement in reliability of conic solvers
(especially exponential cone)
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Pajarito Mountain, New Mexico
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Thanks! Questions?

https://github.com/mlubin/Pajarito.jl
http://arxiv.org/abs/1511.06710
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