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“Models with integer and binary variables must still obey
all of the same disciplined convex programming rules that
CVX enforces for continuous models. For this reason, we are
calling these models mixed-integer disciplined convex
programs or MIDCPs.“
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First, mixed-integer linear programming (MILP),

min
x

cTx

subject to Ax = b,
x ≥ 0,
xi ∈ Z, ∀i ∈ I

- Despite NP-Hardness, many problems of practical interest can
be solved to optimality or near optimality

- Algorithms are based on LP relaxations, branch & bound, cuts,
preprocessing, heuristics, ...

- 50+ years of commercial investment in developing these
techniques
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who uses milp?

http://www.gurobi.com/company/example-customers
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example: unit commitment

Minimize unit-production costs + fixed operating costs
subject to:

- Total generation = total demand, hourly over 24h
- Generation and transmission limits

◦ If a generator is on, it produces within some interval [l,u],
otherwise its production is zero.

- Linear approximation of nonlinear powerflow laws

1% reduction in generation gives billions of dollars per year cost
reduction. Worth spending time to improve optimality.
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Mixed-integer convex programming (MICP),

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

Objective function f and constraints gj convex
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Why mixed-integer convex over MILP?

- Risk/uncertainty
- Statistical model fitting (Bertsimas and King, 2015)
- Model predictive control
- Add discrete aspects to anything you already model using CVX
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what can be modeled using micp?

Disjunctions/unions of compact convex sets (Stubbs and Mehrotra,
1999)

{x : f1(x) ≤ 0 or f2(x) ≤ 0}
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x belongs to the convex hull iff ∃ u1,u2, λ1, λ2 such that
x = λ1u1 + λ2u2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(u1) ≤ 0
f2(u2) ≤ 0
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x = λ1u1 + λ2u2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(u1) ≤ 0
f2(u2) ≤ 0

- If we impose λ1, λ2 ∈ {0, 1} then have conditions for the union,
but not convex

- Instead, introduce z1 = λ1u1, z2 = λ2u2
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x = z1 + z2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
f1(z1/λ1) ≤ 0
f2(z2/λ2) ≤ 0

- Still not convex
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x = z1 + z2
λ1 + λ2 = 1

λ1 ≥ 0, λ2 ≥ 0
λ1f1(z1/λ1) ≤ 0
λ2f2(z2/λ2) ≤ 0
λ1, λ2 ∈ {0, 1}

- Perspective function of any convex function is convex.

11



- Which nonconvex sets can be modeled with MICP? Finite unions
of closed, convex sets

Conjecture: the following set is not MICP representable
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State of the art for solving MICP

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

- f,gj convex, smooth
- Oracles for gradients and Hessians are available.
- Exploit derivative-based nonlinear programming (NLP) solvers
- Bonmin, KNITRO, α-ECP, DICOPT, FilMINT, MINLP_BB, SBB, ...
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[...] solution algorithms for [MICP] have benefit from the
technological progress made in solving MILP and NLP.
However, in the realm of [MICP], the progress has been far
more modest, and the dimension of solvable [MICP] by
current solvers is small when compared to MILPs and NLPs.

– Bonami, Kilinç, and Linderoth (2012)
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Mixed-integer disciplined convex programming (MIDCP),

min
x

f(x)

subject to gj(x) ≤ 0, ∀j
xi ∈ Z, ∀i ∈ I

Objective function f and constraints gj disciplined convex
Forget about derivatives
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What is a disciplined convex function? (Grant, Boyd, Ye, 2006)

- Expressed as composition of basic atoms. Rules of composition
prove convexity.

- Example
√
x2 + y2 versus ||[x, y]||2,

√xy versus geomean(x, y).

Why disciplined convex?

- Functions expressed in this form can be automatically
converted to conic optimization problems. We have good
solvers and theory for conic optimization.
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DCP

min
x

f(x)

s. t. gj(x) ≤ 0,∀j

Conic

min
x

cTx

s. t. Ax = b
x ∈ K

Optimal solution x∗

CVX
CVXPY
Convex.jl

ECOS
SCS

Mosek
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MIDCP

min
x

f(x)

s. t. gj(x) ≤ 0,∀j
xi ∈ Z, ∀i ∈ I

MIConic

min
x

cTx

s. t. Ax = b
x ∈ K

xi ∈ Z, ∀i ∈ I

Optimal solution x∗

CVX
CVXPY
Convex.jl

???
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- Mixed-integer second order cone programming (MISOCP) has
rapidly improving commercial support by Gurobi/CPLEX
◦ Gurobi claims 2.8x improvement from version 6.0 to 6.5 (1
year)

- Otherwise (exponential cones, SDP), mainly research codes
(ecos_bb by Han Wang, 2014; SCIP-SDP by Mars, 2012)

- For MISOCP, no established open-source codes
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naive branch and bound

- Relax integer constraints. Solution provides valid lower bound
on optimal value

- Pick a variable i to “branch on”. Divide search space into xi ≤ A,
xi ≥ A+ 1. Solve relaxations on each of the two branches.

- If relaxation value on a branch is worse than the best known
solution, then can prune that branch.

Implemented in ecos_bb
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facility layout

fo9 facility layout problem

- 182 variables (72 binary), 343 constraints
- ecos_bb: Not solved in 11 hours, no feasible solution
- Gurobi (MISOCP): 19 minutes to optimal

Our new method (requires MILP solver and conic solver):

- CBC+ECOS: 5.5 hours to optimal
- Gurobi (MILP) + ECOS: 8 minutes to optimal
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How general is MISOCP?
MINLPLIB2 benchmark library designed for derivative-based
mixed-integer nonlinear solvers. We classified all of the convex
instances by conic representability.
Of the 333 convex instances, 60% are MISOCP representable.

- tls6 instance previously unsolved. We translated it to
Convex.jl and it was solved by Gurobi!
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What about the remaining 40% of problems?
Of remaining 129 instances, in 107 the only nonlinear expressions
involve exp and log.

Let’s consider the exponential cone:

EXP = cl{(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}

- Closed, convex, nonsymmetric cone. Theoretically tractable and
supported by ECOS (Akle, 2015).
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What about the remaining 22 of 333 instances?

- Seven representable by combination of EXP and second-order
cones (SOC).

- Two representable by the power cone

POWα = {(x, y, z) ∈ R3 : |z| ≤ xay1−a, x ≥ 0, y ≥ 0}

- One family of 13 instances has a univariate convex function not
known to be exactly representable by SOC, EXP, or POW (but
could approximate).
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Folklore: Almost all convex optimization problems of practical
interest can be represented as conic programming problems using
second-order, positive semidefinite, exponential, and power cones.
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Folklore: Almost all convex optimization problems of practical
interest can be represented as conic programming problems using
second-order, positive semidefinite, exponential, and power cones.
Rest of this talk:

- How should we solve mixed-integer conic problems?
- What do we gain (if anything) from the translation to conic
form?
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mixed-integer conic programming

min
x,z

cTz

s.t. Axx+ Azz = b (MICONE)
L ≤ x ≤ U, x ∈ Zn, z ∈ K,

- K = K1 ×K2 × · · · × Kr, where each Ki is a standard cone:
nonnegative orthant, second-order cone, exponential cone,
power cone, or even positive semidefinite cone.

- WLOG, integer variables do not belong to cones, have zero
objective coefficients
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polyhedral outer approximation

MILP solvers are powerful, can we use them to solve MICONE
problems?

- To do so, need to approximate cone K with finite number of
linear constraints (i.e., polyhedron)
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dual cones

Given a closed, convex cone K, the dual cone K∗ is the set such that
z ∈ K iff zTβ ≥ 0 ∀β ∈ K∗.

- Nonnegative orthant, second-order and positive semidefinite
cone are self dual. Exponential and power cones are not.

- Any finite subset of K∗ yields a polyhedral outer approximation
of K!
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min
x,z

cTz

s.t. Axx+ Azz = b (MIOA(T))
L ≤ x ≤ U, x ∈ Zn,

βTz ≥ 0∀β ∈ T,

- If T = K∗, then equivalent to MICONE
- If T ⊆ K∗ and |T| < ∞, then polyhedral outer approximation →
MILP relaxation of MICONE

- Claim: ∃T ⊆ K∗, |T| < ∞ such that MIOA(T) is equivalent to
MICONE
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Consider the subproblem with integer values x = x̂ fixed:

vx̂ = min
z

cTz

s.t. Azz = b− Axx̂, (CP(x̂))
z ∈ K.

The dual of CP(x̂) is

max
β,λ

λT(b− Axx̂)

s.t. β = c− ATzλ
β ∈ K∗.
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the conic outer approximation algorithm

- Start with T = ∅ (or small).
- Until the optimal objective of MIOA(T) is ≥ the optimal
objective of the best feasible solution:
◦ Let x̂ be the optimal integer solution of the MILP problem
MIOA(T)

◦ Solve conic problem CP(x̂), add dual solution βx̂ to T
◦ If CP(x̂) was feasible, record new feasible solution to
MICONE

Finite termination assuming strong duality holds at subproblems
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the conic outer approximation algorithm

- Easy to implement, requires black box MILP and conic solvers
- Very often, number of iterations is < 10, sometimes 10-30.
Worst observed is 171.

- Each MILP subproblem could be NP-Hard, but takes advantage
of fast solvers
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what can go wrong?

Hijazi et al. (2014):

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4
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- Bn is empty
- No outer approximating hyperplane can exclude more than one
integer lattice point

- So any polyhedral outer approximation which contains no
integer vertices needs at least 2n hyperplanes
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how to fix it?

Bn :=

x ∈ {0, 1}n :
n∑
j=1

(
xj −

1
2

)2
≤ n− 1

4


Consider the equivalent formulation in an extended set of variables:

B̂n :=

x ∈ {0, 1}n, z ∈ Rn :
n∑
j=1

zj ≤
n− 1
4 ,

(
xj −

1
2

)2
≤ zj ∀j


- Bn = projx B̂n

- If you form a polyhedral relaxation of each
(
xj − 1

2
)2 ≤ zj

individually, then 2n hyperplanes in R2n is sufficient to exclude
all integer points

- Outer approximation algorithm now converges in 2 iterations
- Why? Small polyhedron in higher dimension can have
exponentially many facets in lower dimension
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“extended formulation for second-order cone”

Vielma, Dunning, Huchette, Lubin (2015):

- For MISOCP: Rewrite ∑
i
x2i ≤ t2

as ∑
i
zi ≤ t, where zi ≥ x2i /t

- Implemented by CPLEX and Gurobi within months of
publication.
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Example: ∑
i
exp(cTi x+ bi) ≤ t

is expressed in conic form as∑
i
zi ≤ t where (cTi x+ bi, 1, zi) ∈ EXP.

The translation to conic form already produces a formulation with
additional variables ideal for polyhedral outer approximation.
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Example:
exp(x2 + y2) ≤ t

is DCP compliant. CVX will generate equivalent formulation

exp(z) ≤ t where x2 + y2 ≤ z

which is then translated to EXP and second-order cones.

- Tawarmalani and Sahinidis (2005) show that polyhedral outer
approximations that exploit composition structure have extra
strength. This comes for “free” with conic representations.
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vx̂ = min
z

cTz

s.t. Azz = b− Axx̂,
z ∈ K.

max
β,λ

λT(b− Axx̂)

s.t. β = c− ATzλ
β ∈ K∗.

Suppose CP(x̂) is feasible and strong duality holds at the optimal
primal-dual solution (zx̂, βx̂, λx̂). Then for any z with Azz = b− Axx̂
and βT

x̂z ≥ 0, we have cTz ≥ vx̂.

Including βT
x̂z ≥ 0 in polyhedral relaxation implies that if x = x̂ is the

optimal (integer part of the) solution of the relaxation, then the
objective value of the relaxation is at least vx̂.

Proof.

βT
x̂z = (c− ATzλx̂)

Tz = cTz− λT
x̂(b− Axx̂) = cTz− vx̂ ≥ 0.
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vx̂ = min
z

cTz

s.t. Azz = b− Axx̂,
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max
β,λ

λT(b− Axx̂)

s.t. β = c− ATzλ
β ∈ K∗.

Given x̂, assume CP(x̂) is infeasible and its dual is unbounded, such
that we have a ray (βx̂, λx̂) satisfying βx̂ ∈ K∗, β = −ATzλx̂, and
λT
x̂(b− Axx̂) > 0. Then for any z satisfying Azz = b− Axx̂ we have

βT
x̂z < 0.

Including βT
x̂z ≥ 0 in polyhedral relaxation implies x = x̂ is

infeasible to the relaxation.

Proof.

βT
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x̂Azz = −λT
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Claim: ∃T ⊆ K∗, |T| < ∞ such that MIOA(T) is equivalent to MICONE

Proof.

Solve CP(x̂) for all possible x̂ (finite). Then include all corresponding
dual vectors βx̂ in T. If x∗ is the integer solution of MIOA(T), then
CP(x∗) is feasible from the second lemma. From first lemma,
objective of MIOA(T) is at least the optimal value of CP(x∗), but it’s
also a relaxation so x∗ must be optimal.
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recap

- Value of disciplined modeling for mixed-integer convex:
◦ Translation to conic form makes the problem easier to
solve!

◦ DCP rules correspond to extended formulations
- Almost all traditional benchmark problems are conic
representable

- Proposed first outer approximation algorithm, based on conic
duality
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Computational results
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Pajarito
New solver!

- 1000 lines of Julia
- Input is in conic form, accessible through Convex.jl DCP
language

- Works with any MILP and conic solvers supported in Julia
- For tough conic problems, also supports traditional nonlinear
solvers

- Open source pending DOE approval
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Translated 194 convex instances from MINLPLIB2 from AMPL into
Convex.jl (heroic parsing work by E. Yamangil).
Compare with Bonmin’s outer approximation algorithm using CPLEX
as the MILP solver. We use the same version of CPLEX plus KNITRO
as NLP (conic) solver.
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(a) Solution time (b) Number of OA iterations

Figure: Comparison performance profiles for SOC representable instances
(Bonmin >30 sec)

- Dominates on iteration count. Haven’t optimized Pajarito so
Bonmin is faster on the easier problems.

- CPLEX is usually the fastest on MISOCPs. Use that instead.
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Almost none of the non-MISOCP instances in MINLPLIB2 are hard!
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gams01

gams01 unsolved instance which is EXP+SOC representable

- 145 variables. 1268 constraints (1158 are linear)
- Previous best bound: 1735.06. Best known solution: 21516.83
- Pajarito solved in 6 iterations (< 10 hours). Optimal solution is
21380.20.
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Thanks! Questions?

http://arxiv.org/abs/1511.06710
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