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aMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
bUniversity of Chicago Booth School of Business, Chicago, IL, USA

Abstract

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational
perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation
that permits the parallel solution of the master program by using structure-exploiting interior-point solvers. Our results demonstrate
the potential for parallel speedup and the importance of regularization (stabilization) in the dual optimization. Load imbalance is
identified as a remaining barrier to parallel scalability.
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1. Introduction

Stochastic mixed-integer programming (SMIP) models with
recourse [1] are commonly used in practice for making discrete
decisions under uncertainty. Such models arise in applications
in energy, routing, scheduling, production planning, and others,
where parts or all of the data for the model are not completely
known at the time decisions must be made, but can be approxi-
mated by some presumed stochastic model.

Although many practical instances remain difficult to solve,
significant progress has been made in developing algorithms to
solve these problems, particularly those with special structure
such as pure-integer recourse or pure-binary first-stage deci-
sions (for reviews, see [1, 2]). For more general SMIP prob-
lems, Sen [2] suggests the dual decomposition (DD) approach
of Carøe and Schultz [3] or the branch-and-price (BP) approach
of Lulli and Sen [4]. This paper focuses on these two ap-
proaches from the perspective of parallel computing.

In our theoretical development in §2, we demonstrate an ef-
fective equivalence between the nonsmooth Lagrangian dual
problem solved by DD and the restricted master problem solved
by BP. While it was previously known that these problems have
the same optimal values, the effective equivalence is stronger
in that solving one provides an optimal solution to both. This
fact relates to the so-called primal-recovery properties of sub-
gradient approaches applied to Lagrangian duals, which only
recently have become more widely known in the optimiza-
tion community [5, 6]. Both approaches are therefore seen to
solve the same relaxation simply by different algorithms for
nonsmooth optimization, the former by the proximal bundle
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method [7] and the latter by a more slowly convergent cutting-
plane method, as discussed in §3.

In §4, we analyze our new formulation for the quadratic pro-
gram (QP) master problem of the proximal bundle method, con-
sidering the particular structure induced by relaxing nonantic-
ipativity constraints. The new formulation results in a block-
angular QP that can be solved efficiently by recently developed
interior-point solvers for structured QPs. Improvements of sev-
eral orders of magnitude are observed over the QP solvers from
off-the-shelf proximal bundle codes.

Reducing the time spent solving the master problem signifi-
cantly increases the scope for parallelism, which has previously
been identified but not exploited in an implementation. In §5,
we present our numerical results from a preliminary parallel
implementation on a high-performance cluster.

2. Dual decomposition and branch-and-price

Consider the following two-stage SMIP with recourse:

z = min
{
c>x + Q(x) : Ax ≤ b, x ∈ X

}
, (1)

where Q(x) = Eξ
[
min

{
q(ξ)>y : Wy ≤ h(ξ) − T (ξ)x, y ∈ Y

}]
.

The parameters c ∈ Qn1 , b ∈ Q, A ∈ Qm1×n1 , and W ∈ Qm2×n2

are fixed and known. The vector ξ is a random variable, as-
sumed here to have a discrete distribution with r possible re-
alizations ξ1, . . . , ξr and corresponding probabilities p1, . . . , pr.
Realization j = 1, . . . , r, known as scenario j, contains the
rational data

(
q(ξ j), h(ξ j),T (ξ j)

)
, now (q j, h j,T j) for brevity,

where the vectors q j and h j and the matrix T j have conformable
dimensions. The sets X ⊆ Rn1

+ and Y ⊆ Rn2
+ denote other re-

strictions, possibly including integer or binary constraints, on
the decision variables x and y, respectively. For j = 1, . . . , r,
define the set

S j :=
{
(x, y j) : Ax ≤ b, T jx + Wy j ≤ h j, x ∈ X, y j ∈ Y

}
.
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The deterministic equivalent problem to (1), assumed to be fea-
sible and bounded, is

z = min
{
c>x +

∑r
j=1 p jq>j y j : (x, y j) ∈ S j, j = 1, . . . , r

}
. (2)

Also consider the equivalent split-variable formulation:

z = min{
∑r

j=1 p j(c>x j + q>j y j) :

(x j, y j) ∈ S j, j = 1, . . . , r, x. = x1 = . . . = xr}.
(3)

The constraints x. = x1 = . . . = xr are known as the nonantici-
pativity conditions, which force the first-stage decision x to be
the same under each scenario. We have introduced an additional
variable x. and modeled nonanticipativity as

x j − x. = 0, j = 1, . . . , r. (4)

This representation of nonanticipativity, as used by Lulli and
Sen [4], differs from the one used by Carøe and Schultz [3], who
instead represent it by a set of equalities solely on the variables
x1, . . . , xr of the form

∑r
j=1 H jx j = 0. (For example, x1 − x j =

0, j = 2, . . . , r.) The representations are equivalent; however,
as shown later (4) is advantageous for computation.

Relaxing the nonanticipativity constraints, one may write the
Lagrangian relaxation of the split-variable formulation as

D(λ1, . . . , λr) = min{
∑r

j=1[L j(x j, y j, λ j) − λ>j x.] :

(x j, y j) ∈ S j, j = 1, . . . , r},
(5)

where L j(x j, y j, λ j) = p j(c>x j + q>j y j) + λ>j x j for j = 1, . . . , r.
As x. is unconstrained, the condition

∑r
j=1 λ j = 0 is re-

quired for boundedness of the Lagrangian. With this condi-
tion, the λ>j x. terms vanish, and the Lagrangian is separable
into D(λ1, . . . , λr) =

∑r
j=1 D j(λ j), where, for j = 1, . . . , r,

D j(λ j) = min
x j,y j

{
L j(x j, y j, λ j) : (x j, y j) ∈ S j

}
. (6)

For any choice of λ1, . . . , λr, it is clear that D(λ1, . . . , λr) ≤ z;
that is, the Lagrangian relaxation provides a valid lower bound
on the optimal value z of (1). A natural problem is then to
find the best such bound. This is known as the Lagrangian dual
problem, and is expressed as [2]

zLD = maxλ1,...,λr

{∑r
j=1 D j(λ j) :

∑r
j=1 λ j = 0

}
. (7)

Because of the potential nonconvexity introduced by the sets
X and Y , the optimal value zLD is typically, but not always,
strictly less than z. We restate Proposition 2 of [3], which pro-
vides a characterization of the optimal value.

Proposition 1. The optimal value zLD of the Lagrangian
dual (7) equals the optimal value of the linear program

min{
∑r

j=1 p j(c>x j + q>j y j) : (x j, y j) ∈ conv(S j), x j = x.,∀ j}.
(8)

The Lagrangian dual (7) is a concave, nonsmooth optimiza-
tion problem, which Carøe and Schultz [3] propose to solve

with subgradient methods. The bounds generated from the La-
grangian dual are then used within a branch-and-bound proce-
dure. This is the so-called dual decomposition (DD) approach.
Lulli and Sen [4], on the other hand, propose to solve (8) di-
rectly using a column generation procedure as part of a branch-
and-price (BP) algorithm.

Below we present the classical subgradient cutting-plane ap-
proach and then demonstrate that applying the cutting-plane
method to (7) is in fact equivalent to solving (8) by column
generation. In particular, it is easy to recover a primal solution
to (8) from DD. This primal solution can then be used as in BP.

Each D j(λ j) is concave in λ j, and γk
j is a subgradient of

D j(λ j) at the point λk
j, if

D j(λ j) ≤ D j(λk
j) + (γk

j)
>(λ j − λ

k
j)

for all λ j. Since L j(x j, y j, λ j) = p j(c>x j + q>j y j) + λ>j x j, given
a λk

j, the corresponding subgradient γk
j is equal to xk

j , where
(xk

j , y
k
j) is a solution to (6). The cutting-plane method (as de-

scribed in Figure 1) replaces each D j(λ j) with a relaxation using
a set of subgradients and solves the following linear program
(LP) at each iteration:

max
∑r

j=1 θ j (9)

s.t.
∑r

j=1 λ j = 0, (x.)

θ j ≤ D j(λk
j) + (xk

j)
>(λ j − λ

k
j),

j=1,...,r,
k=1,...,K. (zk

j)

Initialize: Choose a relative convergence tolerance ε.
K ← 1, λK

j ← 0 for j = 1, . . . , r.
Solve (6) for j = 1, . . . , r, saving optimal value
D j(λK

j ) and solution xK
j .

Step 1: Solve (9), saving optimal θ∗j and λ∗j for all j.
Step 2: K ← K + 1, λK

j ← λ∗j for j = 1, . . . , r.
Solve (6) for j = 1, . . . , r, saving optimal value
D j(λK

j ) and solution xK
j .

Step 3: If
∑

j
[
θ∗j − D j(λK

j )
]
/
[
1 + |

∑
j D j(λK

j )|
]
< ε terminate;

else add D j(λK
j ) + (xK

j )>(λ j − λ
K
j ) to (9).

Step 4: Goto Step 1

Figure 1: Pseudocode for cutting-plane algorithm.

It is easy to recover a primal solution to (8) from the LP so-
lution of (9). The dual of (9) is

min
∑r

j=1
∑K

k=1

[
D j(λk

j) − (xk
j)
>λk

j

]
zk

j (10)

s.t.
∑K

k=1 zk
j = 1, j = 1, . . . , r, (11)∑K

k=1 zk
j x

k
j = x., j = 1, . . . , r, (12)

zk
j ≥ 0, j = 1, . . . , r, k = 1, . . . ,K. (13)

For a given λk
j, let (xk

j , y
k
j) be the corresponding optimizer in

(6). Minimizing a linear function over the feasible region S j

of a mixed-integer linear program is equivalent to minimizing
over the convex hull conv(S j), of the feasible region. Therefore,
D j(λ j) = minx j,y j {L j(x j, y j, λ j) : (x j, y j) ∈ conv(S j)}. Then the
definitions of D j(λk

j) and L j(xk
j , y

k
j, λ

k
j) imply that the objective

2



function (10) is equal to∑r
j=1

∑K
k=1

[
(p j(c>xk

j + q>j yk
j) + (xk

j)
>λk

j) − (xk
j)
>λk

j

]
zk

j =∑r
j=1

∑K
k=1 p j(c>xk

j + q>j yk
j)z

k
j,

which is precisely the objective of the standard restricted master
for (8), as described in Lulli and Sen [4]. Hence, feasible (and
at convergence, optimal) solutions to (8) are obtained from the
dual solution of (9).

Indeed, by using nearly any subgradient-based method to
solve (7), one may obtain at a minimal cost an optimal solution
to (8). This fact, while well known to specialists in the general
case (see, e.g., [6, 8]), has only recently come to attention in the
context of Lagrangian relaxation in integer programming [5].
To the best of our knowledge, this result has not been stated in
the context of DD and BP.

The branch-and-bound algorithm used in DD calls for
branching on disagreements in the primal solutions xk

j , j =

1, . . . , r, produced by the subproblems, whereas in BP the solu-
tion to (8) is used for branching decisions, similar to how the so-
lution to the LP relaxation is used in classical branch and bound
for integer programs. Hence, while known to use the same re-
laxation (8) in a theoretical sense, DD and BP have been viewed
as computationally different approaches [2, 9]; we have demon-
strated a closer computational connection than previously ob-
served. Frangioni [5] suggests using both the solution to the
convexification (8) and the primal solutions to the subproblems
within branch and bound. We leave the exploration of this pos-
sibility in the present context for future research.

3. Improvements to the cutting-plane algorithm

The cutting-plane algorithm is known to be unstable and
to converge slowly on practical instances [6, 7]. Modern ap-
proaches apply some form of regularization to the standard
cutting-plane approach, potentially resulting in a more diffi-
cult master program but also providing a significant reduction
in the total number of iterations required. In particular, the
proximal bundle method [7] uses a quadratic penalty in the ob-
jective to regulate the step length at each iteration. This ap-
proach has appeared in the stochastic programming literature
as Ruszczyński’s regularized decomposition [10]. Other ap-
proaches include `∞ trust regions and level regularization [11];
these have been used in stochastic programming, for example,
by [12] and [13], respectively. The relative performance of dif-
ferent forms of regularization is generally not well understood
and is typically problem dependent [14, 15].

We focus on the proximal bundle method, which is the most
widely used regularization method. In this variant, a quadratic
penalty term

∑r
j=1 ||λ j − λ

+
j ||

2
2 is subtracted from the objective

function of (9), where (λ+
1 , λ

+
2 , . . . , λ

+
r ) is the current “prox-

center” with
∑r

j=1 λ
+
j = 0. The modified master (9) is

max
θ,β

∑r
j=1 θ j −

1
2τ

∑r
j=1 ||β j||

2
2 (14)

s.t.
∑r

j=1 β j = 0 (w)

θ j − (xk
j)
>β j ≤ D j(λk

j) + (xk
j)
>(λ+

j − λ
k
j),

j=1,...,r,
k=1,...,K. (zk

j)

where β j := λ j−λ
+
j . The regularization parameter τ is typically

adjusted at each iteration; see [8].
It is generally advantageous to solve the Lagrangian dual of

(14):

min
w,z

r∑
j=1

 K∑
k=1

zk
j

(
D j(λk

j) + (xk
j)

T (λ+
j − λ

k
j)
)

+
1
2τ
||w −

K∑
k=1

zk
j x

k
j ||

2


(15)

s.t.
∑K

k=1 zk
j = 1, zk

j ≥ 0, j = 1, . . . , r, k = 1, . . . ,K.

Using the solution of (15), one can recover the optimal β j by
β j = 1

τ

(∑K
k=1 zk

j x
k
j − w

)
. Since w is an n1-vector and the zk

j are
scalars, (15) has K × r + n1 variables, which is typically signif-
icantly smaller than the (n1 + 1)× r variables of (9) or (14). We
also expect K×r >> n1. If this does not hold, it could be advan-
tageous to eliminate w by noting that w = 1

r
∑r

j=1
∑K

k=1 zk
j x

k
j at

optimality (this may be derived from the Karush-Kuhn-Tucker
conditions). However, this elimination destroys the particu-
lar structure that is discussed in §4, and a general sparsity-
exploiting solver can perform this elimination automatically.

From standard convergence results [7],

||w −
∑K

k=1 zk
j x

k
j ||

2 → 0, j = 1, . . . , r

at convergence of the proximal bundle method. Hence, in the
limit, w =

∑K
k=1 zk

1xk
1 = · · · =

∑K
k=1 zk

r xk
r , which are precisely the

constraints (12) of the standard column generation master. So,
one recovers the solution to the convexification (8) directly as
the optimal w at convergence of the proximal bundle method.

4. Parallel solution of the master program

It has been observed (e.g., [4]) that the cutting-plane algo-
rithm described in Figure 1 exhibits scope for parallelism in
Step 2, where r independent integer programs must be solved.
The same observation holds for regularized variants discussed
in §3. The potential for parallel speedup, however, is limited
according to Amdahl’s law [16] by the serial execution bottle-
neck of solving the master program, for example, the LP (9)
or the QP (15). We address this bottleneck by identifying the
scope for parallelism in solving the master itself.

Definition. A QP has dual block-angular structure if its con-
straint matrix and objective Hessian matrix can be permuted to
the form 

X
X X
...

. . .

X X

 and


X X · · · X
X X
...

. . .

X X

 ,
3



respectively, with X’s indicating the only (possibly) nonzero
blocks.

A key observation is that the proximal bundle QP mas-
ter (15), as well as the LP dual of the cutting-plane master (9),
exhibit a dual block-angular structure. The Hessian of (15)
exhibits the required structure by noting that for each j, the
quadratic terms are

∑n1
i=1(wi −

∑K
k=1 zk

j x
k
ji)

2. Therefore, the only
bilinear terms are wizk

j, which correspond to the first n1 rows of
the Hessian, and zk

jz
k′
j , k , k′, which correspond to the jth di-

agonal block. The w variables in fact do not appear in the con-
straints, and so the corresponding X blocks are entirely zero.
This property of block-angular structure is a direct result of for-
mulation (4); in particular, it does not hold if the nonanticipa-
tivity representation of Carøe and Schultz [3] is used.

Block-angular structure in linear and quadratic programs has
been successfully exploited for parallelization within interior-
point methods [17]. We follow this approach, a discussion of
which is beyond the scope of this paper. Only minimal de-
velopment, if any, is required to efficiently solve (15) using an
existing structure-exploiting interior-point code.

While our analysis has been limited to two-stage formula-
tions, we remark that the nested block-angular structure that
could arise in the master of a multistage problem remains
within the framework of parallel structure-exploiting interior-
point methods [17].

Note that Kiwiel [18] developed a specialized active-set
method for solving the QP master of the proximal bundle
method for unstructured problems. However, this method can-
not immediately accommodate the equality constraints of our
formulation and it is unknown whether this approach could be
successfully parallelized for block-angular structure.

5. Implementation and numerical results

In this section, we explore different computational aspects of
dual decomposition, with a view toward parallel computation.
We consider only the “root node”; no branching schemes were
implemented. All experiments were performed on Fusion, a
320-node computing cluster at Argonne National Laboratory.
Fusion has an InfiniBand QDR interconnect, and each node has
two quad-core 2.6 GHz Xeon processors and 36 GB of RAM.
Serial experiments were performed on a single node of Fusion.

We use publicly available two-stage SMIP instances. The
sslp and dcap instances are available at http://www2.isye.
gatech.edu/~sahmed/siplib/, and the prod instances are
available at http://people.orie.cornell.edu/huseyin/
research/sp_datasets/sp_datasets.html. Basic statis-
tics about these instances are listed in Table 1. Note that all
of the sslp and dcap instances have integer variables in both
stages. The prod instances, on the other hand, are stochastic
linear programs which will be of interest because of their rela-
tively large number of first-stage variables. Further descriptions
of the instances are available at the indicated websites. Because
of space limitations, we report only on a subset of the instances
available online.

Table 1: Test problem statistics.

Test 1st Stage 2nd-Stage Scenario

Problem Vars. Intgr. Cons. Vars. Intgr. Cons.

sslp 5 25 5 5 1 130 125 30
sslp 10 50 10 10 1 510 500 60
sslp 15 45 15 15 1 690 675 60
dcap233 12 6 6 27 27 15
dcap243 12 6 6 36 36 18
dcap332 12 6 6 24 24 12
dcap342 12 6 6 32 32 14
prod-small 50 0 10 250 0 220
prod-medium 250 0 10 1400 0 250
prod-large 1,500 0 75 1,450 0 700

Initialize: Choose a relative convergence tolerance ε.
K ← 1, τ← 1, m = 0.1, and λ+

j ← 0 for j = . . . , r.
Solve (6) with λ+

j for all j, saving optimal solution xK
j .

curOb j←
∑

j D j(λ+
j ).

Step 1: Solve (15), saving optimal w∗, zk∗
j , θ

∗
j , λ
∗
j .

Step 2: Let v = (
∑

i θ
∗
i ) − curOb j. If v/(1 + |curOb j|) < ε,

terminate, else continue.
Step 3: K ← K + 1.
Step 4: Solve D j(λ∗j) for j = 1, . . . , r, saving optimal value

D j(λK
j ) and solution xK

j .
Step 5: newOb j ←

∑
j D j(λK

j ). Let u = 2τ(1 − (newOb j −
curOb j)/v).

Step 6: Update τ← min(max(u, τ/10, 10−4), 10τ). (See [8])
Step 7: If (newOb j − curOb j > m · v) update λ+

j ← λ∗j ,
curOb j← newOb j.

Step 8: Goto Step 1.

Figure 2: Pseudocode of proximal bundle method as implemented. Note that
we take a maximization view; some signs are inverted from typical statements
of the algorithm, e.g., in [8]. An important mathematical feature of bundle
methods is the ability to remove old subgradients (“compress the bundle”) after
Step 4; however, we do not implement this.

5.1. Serial experiments

The sslp and dcap instances are used to compare the per-
formance of various methods, executed in serial, for optimiz-
ing the Lagrangian dual (7). We experiment with three meth-
ods: (i) the classical cutting-plane method (Figure 1), (ii) the
proximal bundle method (Figure 2), and (iii) the `∞ trust-region
method using the trust-region updating rules of Linderoth and
Wright [12]. All algorithms use a relative convergence toler-
ance ε = 10−7, although the convergence criteria have slight
mathematical differences. In our C++ implementation of the
cutting-plane and `∞ trust-region methods, the master program,
which is linear, is solved by Clp [19], hot-started by using the
optimal basis from the previous solution. For the proximal bun-
dle method, we use both our implementation and the off-the-
shelf open-source implementation ConicBundle [20].

Within our implementation, we experiment with solving the
QP (15) using a general sparsity-exploiting interior-point solver
OOQP [21] (with the MA57 [22] sparse linear-algebra library)
and then using the block-angular-structure-exploiting interior-
point solver PIPS-IPM [23] (with LAPACK routines for dense
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Table 2: Summary of results with serial experiments. All methods except
ConicBundle were implemented by the authors. The cutting-plane method
is shown to require many more iterations than regularized variants. Asterisk
indicates exceeded time limit (7,200 seconds).

Instance Time (Sec.)

(Scenarios) Method Iter. Total Master Objective

sslp 5 25 (50) Cutting plane 46 172 0.09 -121.6
`∞ trust region 21 71 0.05 -121.6
ConicBundle 15 55 0.38 -121.6
OOQP 9 29 0.06 -121.6
PIPS-IPM 9 29 0.10 -121.6

sslp 10 50 (50) Cutting plane 73 2508 0.90 -364.64
`∞ trust region 71 4352 0.90 -364.64
ConicBundle 27 1521 4.82 -364.64
OOQP 14 571 0.18 -365.62
PIPS-IPM 22 1004 0.44 -364.41

sslp 15 45 (10) Cutting plane 89 5088 0.20 -260.5
`∞ trust region 65 5762 0.11 -260.5
ConicBundle 36 1628 0.14 -260.5
OOQP 39 2374 0.48 -260.5
PIPS-IPM 38 2408 0.26 -260.5

dcap233 (200) Cutting plane 194 1189 116 1837.87
`∞ trust region 58 295 46 1833.37
ConicBundle 34 *7200 7027 *
OOQP 58 337 69 1833.4
PIPS-IPM 68 341 34 1833.4

dcap243 (200) Cutting plane 252 1920 168 2326.13
`∞ trust region 40 189 25 2322.37
ConicBundle 34 *7200 7048 *
OOQP 68 348 106 2321.21
PIPS-IPM 68 266 32 2321.21

dcap332 (200) Cutting plane 321 1348 189 1059.10
`∞ trust region 47 210 74 1059.08
ConicBundle 33 *7200 7079 *
OOQP 77 363 121 1059.08
PIPS-IPM 79 282 43 1059.10

linear algebra). Both OOQP and PIPS-IPM use the same
algorithmic implementation of Mehrotra’s predictor-corrector
scheme [24], and each instance is solved from scratch. All
mixed-integer subproblems are solved by using the software
package SCIP [25].

Results are presented in Table 2. For each instance and so-
lution method, we report the total number of iterations, the to-
tal execution time, the time spent solving the master program,
and the objective value at convergence. First observe that the
cutting-plane method requires the largest number of iterations,
as expected. For the sslp instances, the proximal bundle meth-
ods are superior (in terms of total execution time) to the `∞
trust-region approach, while the trust-region approach appears
to be superior on the dcap instances. Note the disagreement on
objective values, in particular for the dcap instances. This is
explained partially by differing convergence criteria, although
in some cases numerical instability is also present; for example,
the cutting-plane method for dcap233 reports a mathematically
invalid objective value that is larger than the optimal objective
value of the original stochastic integer problem.

For the sslp instances, our implementation of the proximal
bundle method has a comparable iteration count to that of the

ConicBundle package, empirically confirming our algorithmic
implementation. However, ConicBundle is unable to solve
the dcap instances to completion because of the time spent
solving the QP master. ConicBundle uses a similar interior-
point method to that of our implementation; the difference in
execution time is attributable to its use of dense linear alge-
bra. That is, ConicBundle treats the Hessian matrix of the QP
master as entirely dense, whereas in Section 4 it was shown to
be highly structured. (Note that ConicBundle does not solve
the equality-constrained formulation; the Hessian, however, re-
mains highly structured.) The results demonstrate the compu-
tational advantage of using general sparse linear algebra rou-
tines within the interior-point method for solving (15). In addi-
tion, specialized linear algebra for the block-angular structure
(as used within PIPS-IPM) may produce further improvements
even before considering parallel computation.

5.2. Parallel experiments
A preliminary parallel version of the proximal bundle

method (Figure 2) was implemented by using the Message
Passing Interface (MPI) API. In our implementation, each sce-
nario is statically assigned to an MPI process, which may be
considered a parallel worker. This worker is then responsible
for solving the mixed-integer subproblems for its assigned sce-
narios at each iteration. This static assignment is simpler to
implement but is expected to be inferior in its load-balancing
properties compared to dynamically assigning the subproblems.

Table 3 contains results from parallel experiments with in-
stances similar to those of the serial experiments in Table 2
but with larger numbers of scenarios. Unlike in Table 2, we
consider only the proximal bundle method. Again we solve
the master QP using the general sparsity-exploiting QP solver
OOQP and then using the structure-exploiting solver PIPS-
IPM. PIPS-IPM is run in parallel using the same MPI pro-
cesses as the mixed-integer subproblems. Identical runs were
performed with 1, 8, 16, and 32 parallel processes, each corre-
sponding to a physical processing core. Recall that the nodes
of the compute cluster have 8 cores each; hence 32 processes
corresponds to 4 physical nodes.

There is a range of behavior on the five instances displayed.
On all instances, using PIPS-IPM results in significant speedups
in the time to solve the master QP as the number of processes
increases, although with diminishing marginal improvements.
For the dcap instances, solving the master QP forms a signif-
icant portion of the total serial execution time. Therefore, by
solving the master in parallel, in addition to the mixed-integer
subproblems, significant reductions in the total execution time
are observed. In comparison, the execution time of the sslp

instances is dominated by the mixed-integer subproblems, and
so speedups in the master have a smaller effect.

Perhaps the most surprising result is that the speedups in
solving the mixed-integer subproblems are smaller than ex-
pected. For example, sslp 10 50 exhibits much less than 2x
speedup from 8 to 16 processes. These results can be explained
by the high variability in the time to solve the subproblems as
well as by the lack of dynamic load balancing in our imple-
mentation. Although the behavior can be explained in retro-
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Table 3: Parallel experiments with the proximal bundle method. With OOQP, only the MIP subproblems are solved in parallel; with PIPS-IPM, both the MIP
subproblems and the master QP are solved in parallel. For the dcap instances, significant overall speedups are observed as a result of reducing the time spent
solving the QP master.

Serial Sparse QP solver (OOQP) Parallel QP Solver (PIPS-IPM)

Instance Parallel Time/Iter. (Sec.) Time/Iter. (Sec.)

(Scenarios) Processes # Iter. Total Master Objective # Iter. Total Master Objective

sslp 5 25 (100) 1 8 6.31 0.013 -127.370 8 6.33 0.022 -127.370
8 8 1.14 0.011 -127.370 8 1.21 0.064 -127.370

16 8 0.71 0.013 -127.370 8 0.74 0.007 -127.370
32 8 0.54 0.013 -127.370 8 0.53 0.007 -127.370

sslp 10 50 (500) 1 26 3,301 0.44 -349.132 22 2,939 0.24 -349.133
8 31 1,252 0.50 -349.132 24 1,049 0.08 -349.136

16 27 1,224 0.43 -349.131 28 1,005 0.04 -349.136
32 31 1,106 0.53 -349.137 27 865 0.05 -349.118

dcap233 (500) 1 68 16.15 4.53 1,736.678 66 12.71 1.29 1,736.674
8 68 6.62 4.37 1,736.678 70 2.39 0.20 1,736.681

16 68 5.75 4.38 1,736.678 73 1.56 0.13 1,736.681
32 68 9.91 4.35 1,736.678 70 1.24 0.12 1,736.674

dcap243 (500) 1 57 14.37 3.05 2,165.479 57 12.11 0.98 2,165.479
8 57 5.04 2.97 2,165.479 58 2.12 0.15 2,165.492

16 57 4.00 2.97 2,165.479 59 2.07 0.09 2,165.490
32 57 7.26 2.95 2,165.479 59 1.88 0.10 2,165.495

dcap332 (500) 1 82 13.51 5.04 1,587.435 80 9.45 1.59 1,587.256
8 82 6.65 4.96 1,587.435 79 1.70 0.20 1,587.391

16 82 5.81 4.98 1,587.435 80 1.89 0.12 1,587.123
32 82 11.20 4.95 1,587.435 77 1.43 0.11 1,587.439

dcap342 (500) 1 59 14.78 2.76 1,902.842 71 12.07 1.26 1,903.014
8 59 6.03 2.70 1,902.842 67 3.19 0.16 1,903.214

16 59 5.46 2.71 1,902.842 56 2.77 0.08 1,902.893
32 59 8.05 2.70 1,902.842 62 2.60 0.08 1,902.894

spect, the solution of the subproblems is typically expected to
be a “trivially” parallel computation, yet here it is seen to be far
from such. Further work will be required to address this issue,
perhaps by considering asynchronicity akin to the work of [12].

Returning to the scalability of the master QP, we conducted
an experiment evaluating the relative performances of OOQP
and PIPS-IPM on instances with larger numbers of first-stage
variables. As noted in §3, formulation (15) may not be efficient
unless K × r >> n1, where n1 is the number of first-stage vari-
ables. Both the sslp and dcap instances have a small number
of first-stage variables (Table 1). Because we are not aware of
SMIP instances with a larger number of first-stage variables, we
use the linear prod instances with 1,000 scenarios (generated
by simple Monte Carlo sampling). This substitution is valid
because the structure of the QP master remains the same, and
we do not consider the time spent in the (now linear) subprob-
lems. The results in Figure 3 demonstrate that as the number of
first-stage variables increases, the general sparse QP solver may
become more effective than the structure-exploiting solver in
serial; yet, when run in parallel, the structure-exploiting solver
is significantly faster.
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