
Mixed-integer convex optimization: outer
approximation algorithms and modeling power

by

Miles Lubin

B.S., The University of Chicago (2011)
M.S., The University of Chicago (2011)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

August 11, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Juan Pablo Vielma

Assistant Professor of Operations Research
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-director, Operations Research Center



2



Mixed-integer convex optimization: outer approximation

algorithms and modeling power

by
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Abstract

In this thesis, we study mixed-integer convex optimization, or mixed-integer convex
programming (MICP), the class of optimization problems where one seeks to minimize
a convex objective function subject to convex constraints and integrality restrictions
on a subset of the variables. We focus on two broad and complementary questions
on MICP.

The first question we address is, “what are efficient methods for solving MICP
problems?” The methodology we develop is based on outer approximation, which
allows us, for example, to reduce MICP to a sequence of mixed-integer linear pro-
gramming (MILP) problems. By viewing MICP from the conic perspective of mod-
ern convex optimization as defined by Ben-Tal and Nemirovski, we obtain significant
computational advances over the state of the art, e.g., by automating extended for-
mulations by using disciplined convex programming. We develop the first finite-time
outer approximation methods for problems in general mixed-integer conic form (which
includes mixed-integer second-order-cone programming and mixed-integer semidefi-
nite programming) and implement them in an open-source solver, Pajarito, obtaining
competitive performance with the state of the art.

The second question we address is, “which nonconvex constraints can be modeled
with MICP?” This question is important for understanding both the modeling power
gained in generalizing from MILP to MICP and the potential applicability of MICP to
nonconvex optimization problems that may not be naturally represented with integer
variables. Among our contributions, we completely characterize the case where the
number of integer assignments is bounded (e.g., mixed-binary), and to address the
more general case we develop the concept of “rationally unbounded” convex sets. We
show that under this natural restriction, the projections of MICP feasible sets are
well behaved and can be completely characterized in some settings.

Thesis Supervisor: Juan Pablo Vielma
Title: Assistant Professor of Operations Research
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Chapter 1

Introduction

1.1 MICP

In this thesis, we study mixed-integer convex optimization, or mixed-integer con-

vex programming (MICP), the class of optimization problems where one seeks to

minimize a convex objective function subject to convex constraints and integrality

restrictions on a subset of the variables. A defining characteristic of MICP that

distinguishes it from more general nonconvex optimization is that even though the

integrality restrictions can be viewed as nonconvex constraints, they are discrete con-

straints. Specifically, in the typical case where the number of possible assignments to

the integer variables is finite, in principle one can compute a globally optimal solution

by solving a finite number of a convex optimization problems, which is not true for

nonconvex optimization in general. Intuitively, we can think of convex optimization

problems as easy to solve to global optimality, although some caveats apply. This

observation may give us hope that there is sufficient structure in MICP problems to

design practical algorithms that guarantee global optimality in finitely many steps.

Note that although we focus on global optimality in our algorithmic efforts, it is rea-

sonable to infer that by broadening the class of problems that we are able to solve

to global optimality, we will also broaden the class of problems for which we can

obtain (provably) good heuristic solutions in an appropriate amount of time, which

in practice is perhaps what is actually useful.
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MICP is a natural extension of mixed-integer linear optimization, or mixed-integer

linear programming (MILP), where the objective function and constraints must be

linear and polyhedral, respectively. Indeed, Kelley [50], in his widely cited paper that

proposed the cutting-plane method for convex optimization, immediately noted how

his approach could be combined with Gomory’s algorithm [36] for pure integer linear

programming to solve so-called integer convex programming problems, where all vari-

ables are constrained to integer values. Following early work in integer programming,

of which Gomory’s algorithm is just one piece, MILP has established itself as a practi-

cal framework for optimization problems in scheduling, logistics, planning, and many

other areas. Although these problems are in general NP-Hard, almost 60 years of

investment in MILP techniques has resulted in powerful commercial and open-source

solvers that can solve MILP problems of practical interest within reasonable time lim-

its [51]. Over the same period, convex optimization, or convex programming (CP),

has grown into a well-developed field with solution methods that are both efficient in

theory and widely used in practice [17, 48, 6].

Despite these advances in MILP and CP, our impression is that the more gen-

eral MICP has not entered the mainstream of optimization in terms of both aca-

demic interest and applications in practice, with the exception of the special case of

mixed-integer second-order-cone programming (MISOCP) that has recently become

supported by commercial solvers. A critic might explain this situation by suggesting

that more general MICP problems are either too difficult to solve or that there aren’t

sufficient real-world motivations to consider solving them in such generality.

We would respond to this explanation as follows. To date, the mainstream of

MICP developments has been based on traditional nonlinear programming (NLP)

under the name of convex mixed-integer nonlinear programming (convex MINLP).

Ben-Tal and Nemirovski [7] draw a distinction between convex NLP and modern

convex optimization, the former being based on smooth functions and the Karush-

Kuhn-Tucker (KKT) conditions and the latter being based on conic duality with

“nice” cones that we will later describe. In broad terms, our algorithmic techniques

can be seen as modern-convex-optimization (i.e., conic) analogues of existing methods

20



for convex MINLP. The key insights we develop in Chapter 2 could be considered

trivial by anyone familiar with extended formulations [45, 83], conic duality [6], and

disciplined convex programming (DCP) [40], yet we were able to use these insights

to build software that solved previously open benchmark instances. We suppose that

this is the case both because there is little overlap in the MILP and CP research

communities and because the computational infrastructure around modern convex

optimization, namely modeling interfaces and solvers, has made significant progress in

the past decade. For example, development of Bonmin [14], a leading convex MINLP

solver, started in 2004, before the now widely-used DCP modeling package CVX [38]

was released. Our subsequent work in Chapter 3 demonstrates that the additional

structure provided by the conic approach can yield both better understanding of the

structure of MICP problems and practical computational advances. We would argue,

therefore, that it is at the very least premature and ill-informed to dismiss MICP on

the basis of perceived difficulty because there remains fertile ground for additional

advances by making connections between MILP and CP. As two examples of areas

that could yield further significant advances, in this thesis we consider neither cuts

that refine convex relaxations based on integrality information [52, 54], nor the effect

of strong formulations, which have been crucial to MILP [86].

We would also argue that MICP has a demonstrated, yet not nearly fully realized,

potential for significant real-world applications. Not attempting to be comprehensive,

we briefly mention some of these applications. Bonami, Kilinç, and Linderoth [15] cite

applications of convex MINLP and MISOCP in portfolio optimization, block layout

design in manufacturing, network design, and design and control of chemical processes

among others. SOCP arises from chance constraints [61] or robust optimization [8],

on top of which it is natural to impose integrality restrictions, e.g., to make schedul-

ing decisions [82]. Convex relaxations of the nonconvex power flow equations [22]

can be combined with on/off decisions to enhance power grid operations [56]. Non-

convex obstacle avoidance constraints in robotics can be modeled with MICP [57].

Cardinality-constrained convex statistical estimation problems can be formulated as

MICP problems [75, 69]. Finally, our preliminary work on MICP has already been
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cited in a paper on genetic sequencing [21]. In a rigorous sense, the scope of MICP

applicability is not known because there has been very little work on characterizing

precisely which nonconvex optimization problems can be expressed exactly in MICP

form. In Chapter 4 and our related publication, to our knowledge we are the first

authors to consider the question of which nonconvex sets can serve as the feasible re-

gions for MICP problems in full generality. Our results provide a new understanding

of the scope and limitations of MICP.

Concluding our response to the critic, we would suggest that MICP is a promising

research area for the academic community, and that more practical applications will

follow once the technology is developed. In the remainder of the thesis, we hope

to provide further support for this argument. We now introduce the three chapters

which serve as the body of the thesis.

1.2 Chapter 2: Polyhedral outer approximation, ex-

tended formulations, and disciplined convex pro-

gramming

This chapter is based on work with Emre Yamangil, Russell Bent, and Juan Pablo

Vielma. Preliminary work was published in conference proceedings as [63] with an

extended journal article currently under review [64].

In order to employ MILP to solve MICP problems, we relax the convex constraints

by representing them as an intersection of a finite number of half-spaces, that is,

polyhedral constraints. Based on this idea, Duran and Grossman [31] and Leyffer [58]

developed the outer approximation (OA) algorithm which solves a sequence of MILP

and convex NLP subproblems to deliver a globally optimal solution for convex MINLP

problems in a finite number of iterations; we present a generalized version of this

algorithm which does not rely on NLP subproblems in Section 2.1.

Despite the fact that many MICP approaches, including the OA algorithm, build

on MILP approaches, there remains a significant performance gap between the two

22



problem classes. Bonami, Kilinç, and Linderoth [15] note in a recent review that

continued advances in MILP and NLP have translated into “far more modest” growth

in the scale of problems which convex MINLP solvers can solve within reasonable

time limits.

The cases in which the OA algorithm and others based on polyhedral approx-

imation perform poorly are those in which the convex set of constraints is poorly

approximated by a small number of half-spaces. In Section 2.2, we review a simple

example identified by Hijazi et al. [45] where the OA algorithm requires 2𝑛 iterations

to solve an MICP instance with 𝑛 decision variables. Fortunately, [45] also propose

a solution based on ideas from Tawarmalani and Sahinidis [83] that can significantly

improve the quality of a polyhedral approximation by constructing the approximation

in a higher dimensional space. These constructions are known as extended formula-

tions, which have also been considered by [88, 53]. Although Hijazi et al. demon-

strate impressive computational gains by using extended formulations, implementing

these techniques within traditional convex MINLP solvers requires more structural

information than provided by value-and-gradient oracles through which these solvers

typically interact with nonlinear functions. To our knowledge, MINOTAUR [59] is

the only such solver to automate extended formulations. In Section 2.3 we identify

the modeling concept of disciplined convex programming (DCP) [40], popularized in

the CVX software package [38], as a practical solution to the problem of automati-

cally generating extended formulations based on a user’s algebraic representation of

an MICP problem.

Our investigation of DCP leads us in Section 2.4 to consider conic optimization as

a representation of convex constraints that compactly encodes all of the information

needed to construct extended formulations. This key observation links together a

number of streams in modern convex optimization and MICP research, and in par-

ticular explains the increasingly popular role of MISOCP and how it can be extended

to cover “general” MICP. Pulling these pieces together, in Section 2.5 we develop the

first finite-time OA algorithm for mixed-integer conic optimization problems based on

conic duality. We note explicit failure cases when the assumptions of strong duality
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or bounded number integer variables are not satisfied. In Section 2.6, we present a

prototype of Pajarito, a new solver for MICP based on the conic OA algorithm and

compare its efficiency with state-of-the-art convex MINLP solvers Bonmin, SCIP, and

Artelys Knitro. We report the solution of a number of previously unsolved benchmark

instances.

1.3 Chapter 3: 𝒦* cuts, LP-based branch-and-bound,

and Pajarito

This chapter is based on work with Chris Coey and Juan Pablo Vielma which is soon

to be submitted for publication.

While in Chapter 2, conic form is motivated as a convenient encoding for automat-

ing extended formulations, in this chapter we take conic form as the starting point and

develop a comprehensive computational framework for solving mixed-integer conic

optimization problems by outer approximation. Our methodology treats standard

problem classes like MISOCP and MISDP as well as problems involving the nonsym-

metric exponential cone.

In Section 3.2 we develop “𝒦* cuts” as a unifying way to understand outer approx-

imation of convex cones. We address the question of how to initialize a polyhedral

outer approximation, making connections with known inner/outer approximations of

the PSD cone [3]. We obtain cuts via conic duality from solving continuous relaxations

and continuous subproblems with bound restrictions on the integer-constrained vari-

ables, generalizing results from Chapter 2 that were restricted to subproblems with

all integer-constrained variables fixed. We show that separating hyperplanes based

on subgradients, which are in use by some existing solvers, may also be interpreted

as 𝒦* cuts.

Following the introduction of 𝒦* cuts, in Section 3.3 we present an LP-based

branch-and-bound algorithm which is a conic analogue of the Quesada and Gross-

mann [76] algorithm for convex MINLP. It differs from the iterative OA approach

24



proposed in Chapter 2 by using a single branch-and-bound tree instead of solving a

sequence of independent MILP subproblems and hence may be faster. The analysis

of this algorithm assumes that LP subproblems are solved to exact solutions. In Sec-

tion 3.4 we slightly relax this assumption, allowing the LP solver to enforce the 𝒦*

cuts with some positive tolerance on violations. In this setting, we can correct the 𝒦*

cuts by rescaling them and, with a modified branch-and-bound algorithm, guarantee

that we find a globally optimal solution for any strictly positive relative optimality

gap.

In Section 3.5 we consider extensions to the 𝒦*-cuts framework, obtaining multiple

linear cuts or second-order cone outer approximations from a single cut for the PSD

cone and cleanly handling lifting of the second-order cone [88].

In Section 3.6, we present our solver Pajarito and its architecture as the first MICP

solver written in the Julia language [12]. Notably, Pajarito was almost completely

rewritten following the preliminary results in Chapter 2. Finally, in our computa-

tional experiments in Section 3.7, we test a number of algorithmic variants to gain a

better understanding of what works best in practice. When we put our best methods

against other competitors on the MISOCP benchmark library in CBLIB [34], we find

that Pajarito outperforms all open-source competitors and obtains competitive per-

formance with CPLEX’s specialized MISOCP algorithm when we use CPLEX purely

as an MILP solver.

1.4 Chapter 4: The modeling power of MICP

This chapter is based on work with Ilias Zadik and Juan Pablo Vielma which has been

submitted for publication [66]. It is an extension of the conference publication [65].

Early advances in solution techniques for mixed-integer linear programming (MILP)

motivated studies by Jeroslow and Lowe [49] and others (recently reviewed in [86])

on understanding precisely which sets can be encoded as projections of points within

a closed polyhedron satisfying integrality restrictions on a subset of the variables.

These sets can serve as feasible sets in mixed-integer linear optimization problems
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and hence an understanding of their structure yields a better understanding of what

can be modeled with MILP. Jeroslow and Lowe, for example, proved that the epi-

graph of the piecewise linear function 𝑓(𝑥) which equals 1 if 𝑥 > 0 and 0 if 𝑥 = 0, is

not representable over the domain 𝑥 ≥ 0. Such a function would naturally be used

to model a fixed cost in production. It is now well known that an upper bound on 𝑥

is required in order to encode such fixed costs in an MILP formulation.

Motivated by our progress in MICP solution techniques, in this chapter we address

the analogous question of which nonconvex sets may be represented as projections

of points within a convex set satisfying integrality restrictions on a subset of the

variables, i.e., which sets may serve as feasible regions for MICP problems. To our

knowledge, our work in [65] was the first to consider this general case. Related but

more specific analysis has been developed by Del Pia and Poskin [24] where they

characterized the case where the convex set is an intersection of a polyhedron with

an ellipsoidal region and by Dey and Morán [25] where they studied the structure

of integer points within convex sets but without allowing a mix of continuous and

discrete variables.

In Section 4.2 we provide a complete characterization of what can be represented

when the number of possible integer assignments is bounded, extending [65] with a

revised formulation that can be proven to represent the convex hull of a union of

convex sets.

The most substantial contributions of the chapter focus on the case with infinitely

many possible integer assignments, for which we develop the notion of rational MICP

(Section 4.3) as an analogue of rational MILP that reasonably restricts the directions

of unboundedness. This notion has been revised and simplified from [65]. Using

the additional structure of rational MICP, we can make a number of strong state-

ments characterizing MICP representations of compact sets, epigraphs, subsets of the

natural numbers, and graphs of piecewise linear functions.

In Section 4.4 we develop properties independent of the rationality assumption

that can be used to put a lower bound on how many integer dimensions are needed to

represent given nonconvex sets. These properties are based on a necessary criterion
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for MICP representability presented in [65], which we used to prove, for example,

that the set of rank-one matrices is not representable.

Our results on MICP representability enable us to answer, for the most part, a

question posed by S. Boyd in a private discussion. The question was, to what extent

can a DCP framework like CVX be extended to include basic operations which are

MICP representable, i.e., which functions may be represented as MIDCP atoms? (See

Section 2.4 for background on MIDCP.) A corollary of Theorem 2 is that functions

defined on a compact domain whose epigraphs are rational MICP representable (with

an additional regularity condition) must be piecewise convex with finitely many pieces.

This observation suggests that it is reasonable to restrict one’s attention to such

piecewise convex functions when designing MIDCP atoms.

1.5 Notation

We use the notation J𝑘K to denote the set {1, 2, . . . , 𝑘}. We use boldface symbols to

refer to matrices and vectors. We use subscript and drop boldface to refer to elements

of a vector. We use superscripts to index over a collection of vectors. cl(𝐴) is the

closure of the set 𝐴. 𝑒(𝑘) is vector of appropriate length with zero everywhere except

for (𝑒(𝑘))𝑘 = 1. 1 and 0 are the vectors of all 1 and 0, respectively, with dimension

implied by the context. We denote the set of real numbers by R and the set of rational

numbers by Q.

Following [48, 17] we say that a set 𝑆 ⊆ R𝑛 is convex if for all 𝑥1,𝑥2 ∈ 𝑆 and for

all 𝜆 ∈ [0, 1] we have 𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑆. We say a set 𝑆 ⊆ R𝑛 is a cone if for all

𝑥 ∈ 𝑆 and for all 𝜆 ∈ [0,∞) we have 𝜆𝑥 ∈ 𝑆. Given a function 𝑓 : 𝑆 → R for some

𝑆 ⊆ R𝑛 we define its epigraph to be the set epi(𝑓) = {(𝑡,𝑥) ∈ R× 𝑆 : 𝑡 ≥ 𝑓(𝑥)}. If

epi(𝑓) is a convex set then we say 𝑓 is a convex function. We define a polyhedron to

be a finite intersection of closed halfspaces, i.e., a set of the form {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}

for some matrix 𝐴 and vector 𝑏.

Notation used in a specific chapter or section will be introduced as appropriate.

Note that we use both 𝑐𝑇𝑥 and ⟨𝑐,𝑥⟩ to denote the inner product
∑︀

𝑖∈J𝑛K 𝑐𝑖𝑥𝑖 in
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different chapters.
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Chapter 2

Polyhedral approximation in

mixed-integer convex optimization

2.1 Polyhedral outer approximation

We state a generic mixed-integer convex optimization problem as

min
𝑥

𝑐𝑇𝑥

s.t. 𝑥 ∈ 𝒳 , (MICONV)

𝑥𝑖 ∈ Z, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ J𝐼K ,

where 𝒳 is a closed, convex set, and the first 𝐼 of 𝑁 variables are constrained to take

integer values with explicit finite bounds 𝑙𝑖 and 𝑢𝑖. We assume that the objective

function is linear. This assumption is without loss of generality because, given a

convex, nonlinear objective function 𝑓(𝑥), we may introduce an additional variable 𝑡,

constrain (𝑡,𝑥) to belong to the epigraph of 𝑓 , and then take 𝑡 as the linear objective

to minimize; see [15]. For concreteness, the convex set of constraints 𝒳 could be

specified as

𝒳 = {𝑥 ∈ R𝑛 : 𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ J𝐽K}, (2.1)
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for some collection of 𝐽 smooth, convex functions, in which case MICONV would

typically be called a convex MINLP instance. We refer to the constraints 𝑥𝑖 ∈ Z ∀ 𝑖 ∈

J𝐼K as integrality constraints. Note that when these integrality constraints are relaxed

(i.e., removed), MICONV becomes a convex optimization problem.

A straightforward approach for finding the global solution of MICONV is branch

and bound. Branch and bound is an enumerative algorithm where lower bounds

derived from relaxing the integrality constraints in MICONV are combined with re-

cursively partitioning the space of possible integer solutions. The recursive partition

is based on “branches” such as 𝑥𝑖 ≤ 𝑘 and 𝑥𝑖 ≥ 𝑘 + 1 for some integer-constrained

index 𝑖 ∈ J𝐼K and some value 𝑘 chosen between the lower bound 𝑙𝑖 and the upper

bound 𝑢𝑖 of 𝑥𝑖. In the worst case, branch and bound requires enumerating all possi-

ble assignments of the integer variables, but in practice it can perform much better

by effectively pruning the search tree. Gupta and Ravindran [42] describe an early

implementation of branch-and-bound for MICP, and Bonami et al. [16] more recently

revisit this approach.

On many but certainly not all problems, however, the branch-and-bound algorithm

is not competitive with an alternative family of approaches based on polyhedral outer

approximation. Driven by the availability of effective solvers for LP and MILP, it was

observed in the early 1990s by Leyffer and others [58] that it is often more effective

to avoid solving convex, nonlinear relaxations, when possible, in favor of solving

polyhedral relaxations using MILP. This idea has influenced a majority of the solvers

recently reviewed and benchmarked by Bonami et al. [15].

In this section, we will provide a sketch of an OA algorithm. We derive the

algorithm in a more general way than most authors that will later be useful in the

discussion of mixed-integer conic problems in Section 2.5, although for intuition and

concreteness of the discussion we illustrate the key points of the algorithm for the

case of the smooth, convex representation (2.1), which is the traditional setting. We

refer readers to [14, 31, 1] for a more rigorous treatment of the traditional setting and

Section 2.5 for more on the conic setting (i.e., when 𝒳 is an intersection of convex

cone and an affine subspace). We begin by defining polyhedral outer approximations.
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Definition 1. A set 𝑃 is a polyhedral outer approximation of a convex set 𝒳 if 𝑃 is

a polyhedron and 𝑃 contains 𝒳 , i.e., 𝒳 ⊆ 𝑃 .

Note that we have not specified the explicit form of the polyhedron. While the

traditional OA algorithm imagines 𝑃 to be of the form {𝑥 ∈ R : 𝐴𝑥 ≤ 𝑏} for some

𝐴 and 𝑏, it is useful to not tie ourselves, for now, to a particular representation of

the polyhedra.

Polyhedral outer approximations of convex sets are quite natural in the sense that

every closed convex set can be represented as an intersection of an infinite number

of closed half-spaces [48]. For instance, when 𝒳 is given in the functional form (2.1)

and each function 𝑔𝑗 : R𝑛 → R is smooth and finite-valued over R𝑛 then the following

equivalence holds:

𝒳 = {𝑥 ∈ R𝑛 : 𝑔𝑗(𝑥
′) +∇𝑔𝑗(𝑥′)𝑇 (𝑥− 𝑥′) ≤ 0 ∀𝑥′ ∈ R𝑛, 𝑗 ∈ J𝐽K}, (2.2)

where ∇𝑔𝑗(𝑥′) is the gradient of 𝑔𝑗. When some 𝑔𝑗 functions are not defined (or do

not take finite values) over all of R𝑛 then these “gradient inequalities” plus additional

linear constraints enforcing the domain of each 𝑔𝑗 provide a representation of 𝒳 as

an intersection of halfspaces; see [48] for further discussion.

Hence, in the most basic case, a polyhedral approximation of 𝒳 can be derived

by picking a finite number of points 𝑆 ⊂ R𝑛 and collecting the half-spaces in (2.2) for

𝑥′ ∈ 𝑆 instead of for all 𝑥′ ∈ R𝑛. What is perhaps surprising is that a finite number

of half-spaces provides a sufficient representation of 𝒳 in order to solve MICONV to

global optimality, under some assumptions which we later prove are necessary. This

idea is encompassed by the OA algorithm which we now describe.

Given a polyhedral outer approximation 𝑃 of the constraint set 𝒳 , we define the

following mixed-integer linear relaxation of MICONV:
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𝑟𝑃 = min
𝑥

𝑐𝑇𝑥

s.t. 𝑥 ∈ 𝑃, (MIOA(P))

𝑥𝑖 ∈ Z, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ J𝐼K .

Note that MIOA(P) is a relaxation because any 𝑥 feasible to MICONV must be

feasible to MIOA(P). Therefore the optimal value of MIOA(P) provides a lower bound

on the optimal value of MICONV. This bound may be NP-Hard to compute, since

it requires solving a mixed-integer linear optimization problem; nevertheless we may

use existing, powerful MILP solvers for these relaxations.

We refer to the integer-constrained components of a solution 𝑥 as 𝑥J𝐼K. Given a

solution 𝑥* to MIOA(P), the OA algorithm proceeds to solve the continuous, convex

problem CONV(𝑥*
J𝐼K) that results from fixing the integer-constrained variables 𝑥J𝐼K

to their values in 𝑥*
J𝐼K:

𝑣𝑥*
𝐼

= min 𝑐𝑇𝑥

s.t. 𝑥 ∈ 𝒳 , (CONV(𝑥*
J𝐼K))

𝑥J𝐼K = 𝑥*
J𝐼K.

If CONV(𝑥*
J𝐼K) is feasible, let 𝑥′ be the optimal solution. Then 𝑥′ is a feasible

solution to MICONV and provides a corresponding upper bound on the best possible

objective value. If the objective value of this convex subproblem equals the objec-

tive value of MIOA(P) (i.e., 𝑐𝑇𝑥′ = 𝑐𝑇𝑥*), then 𝑥′ is a globally optimal solution

of MICONV. If there is a gap, then the OA algorithm must update the polyhedral

outer approximation 𝑃 and re-solve MIOA(P) with a tighter approximation, yielding

a nondecreasing sequence of lower bounds.

To ensure finite termination of OA it is sufficient to prevent repetition of unique

assignments of the integer-valued components 𝑥*
J𝐼K, because by assumption there is

only a finite number of possible values. The following lemma states a condition on
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the polyhedral outer approximation 𝑃 that helps prove finite convergence.

Lemma 1. Fixing 𝑧 ∈ Z𝐼 , if 𝑥 ∈ 𝑃 implies 𝑐𝑇𝑥 ≥ 𝑣𝑧 for all 𝑥 ∈ R𝑁 with 𝑥J𝐼K = 𝑧

where 𝑣𝑧 is the optimal value of CONV(𝑧) then the OA algorithm must terminate

if MIOA(P) returns an optimal solution 𝑥* with integer components matching 𝑥*
J𝐼K =

𝑧.

Proof. Assume we solve MIOA(P) and obtain a solution 𝑥*. If the integer part of 𝑥*

matches 𝑧, by our assumptions we have 𝑟𝑃 = 𝑐𝑇𝑥* ≥ 𝑣𝑧, where 𝑟𝑃 is the optimal

value of MIOA(P). Since MIOA(P) is a relaxation and 𝑣𝑧 is the objective value of a

feasible solution, then we must have 𝑟𝑃 = 𝑣𝑧. Thus, we have proven global optimality

of this feasible solution and terminate.

Note that Lemma 1 provides a general condition that does not assume any par-

ticular representation of the convex constraints 𝒳 . In the traditional setting of the

smooth, convex representation (2.1), if 𝑥′ is an optimal solution to CONV(𝑥*
J𝐼K) and

strong duality holds, e.g., as in Prop 5.1.5 of Bertsekas [11], then the set of constraints

𝑔𝑗(𝑥
′) +∇𝑔𝑗(𝑥′)𝑇 (𝑥− 𝑥′) ≤ 0 ∀ 𝑗 ∈ J𝐽K (2.3)

are sufficient to enforce the condition in Lemma 1 for finite convergence. In other

words, within the OA loop after solving CONV(𝑥*
J𝐼K), updating 𝑃 by adding the

constraints (2.3) is sufficient to ensure that the integer solution 𝑥*
𝐼 does not repeat,

except possibly at termination. Intuitively, strong duality in CONV(𝑥*
J𝐼K) implies

that there are no descent directions (over the continuous variables) from 𝑥′ which are

feasible to a first-order approximation of the constraints 𝑔𝑗(𝑥) ≤ 0 for 𝑗 ∈ J𝐽K [11].

Hence a point 𝑥 sharing the integer components 𝑥J𝐼K = 𝑥*
J𝐼K must satisfy 𝑐𝑇 (𝑥−𝑥′) ≥

0 or precisely 𝑐𝑇𝑥 ≥ 𝑣𝑥*
𝐼
. See [58, 31, 1] for further discussion.

If CONV(𝑥*
J𝐼K) is infeasible, then to ensure finite convergence it is important to

refine the polyhedral approximation 𝑃 to exclude the corresponding integer point.

That is, we update 𝑃 so that

{𝑥 ∈ R𝑛 : 𝑥J𝐼K = 𝑥*
J𝐼K} ∩ 𝑃 = ∅. (2.4)
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In the traditional smooth setting, it is possible in the infeasible case to derive a set of

constraints analogous to (2.3), e.g., by solving an auxiliary feasibility problem where

we also assume strong duality holds [14, 1].

To review, the OA algorithm proceeds in a loop between the MILP relaxation MIOA(P)

and the continuous subproblem with integer values fixed CONV(𝑥*
J𝐼K). The MILP

relaxation provides lower bounds and feeds integer assignments to the continuous

subproblem. The continuous subproblem yields feasible solutions and sufficient infor-

mation to update the polyhedral approximation in order to avoid repeating the same

assignment of integer values. The algorithm is stated more formally in Algorithm 1

and illustrated in Figure 2-1.

Algorithm 1 The polyhedral outer approximation (OA) algorithm
Initialize: 𝑧𝑈 ←∞, 𝑧𝐿 ← −∞, polyhedron 𝑃 ⊃ 𝒳 such that MIOA(P) is bounded. Fix
convergence tolerance 𝜖.
while 𝑧𝑈 − 𝑧𝐿 ≥ 𝜖 do

Solve MIOA(P).
if MIOA(P) is infeasible then

MICONV is infeasible, so terminate.
end if
Let 𝑥* be the optimal solution of MIOA(P) with objective value 𝑤𝑇 .
Update lower bound 𝑧𝐿 ← 𝑤𝑇 .
Solve CONV(𝑥*

J𝐼K).
if CONV(𝑥*

J𝐼K) is feasible then
Let 𝑥′ be an optimal solution of CONV(𝑥*

J𝐼K) with objective value 𝑣𝑥*
J𝐼K

.
Derive polyhedron 𝑄 satisfying 𝑥 ∈ 𝑄 with 𝑥J𝐼K = 𝑥

*
J𝐼K implies 𝑐𝑇𝑥 ≥ 𝑣𝑥*

J𝐼K

by using strong duality (e.g., (2.3)).
if 𝑣𝑥*

J𝐼K
< 𝑧𝑈 then

Update upper bound 𝑧𝑈 ← 𝑣𝑥*
J𝐼K

.
Record 𝑥′ as the best known solution.

end if
else if CONV(𝑥*

J𝐼K) is infeasible then
Derive polyhedron 𝑄 satisfying {𝑥 ∈ R𝑛 : 𝑥J𝐼K = 𝑥

*
J𝐼K} ∩𝑄 = ∅.

end if
Update 𝑃 ← 𝑃 ∩𝑄.

end while

The efficiency of the OA algorithm is derived from the speed of solving the MIOA(P)

problem by using state-of-the-art MILP solvers. Indeed, in 2014 benchmarks by Hans

Mittelman, the OA algorithm implemented within Bonmin using CPLEX as the MILP
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𝑐

𝑥′

𝑥*

𝑥′

Figure 2-1: An illustration of the outer approximation algorithm. Here, we minimize
a linear objective 𝑐 over the ball 𝑥21 + 𝑥22 ≤ 2.5 with 𝑥1 integer constrained. On the
left, the point 𝑥′ is the solution of the continuous relaxation, and we initialize the
polyhedral outer approximation with the tangent at 𝑥′. We then solve the MIOA(P)
subproblem, which yields 𝑥*. Fixing 𝑥1 = 2, we optimize over the circle and update
the polyhedral approximation with the tangent at 𝑥′ (on the right). In the next
iteration of the OA algorithm (not shown), we will prove global optimality of 𝑥′.

solver was found to be the fastest among convex MINLP solvers [70]. In spite of tak-

ing advantage of MILP solvers, the traditional OA algorithm suffers from the fact

that the gradient inequalities (2.3) may not be sufficiently strong to ensure fast con-

vergence. In the following section, we identify when these conditions may occur and

how to work around them within the framework of OA.

2.2 Outer approximation enhancements

The OA algorithm is powerful but relies on polyhedral outer approximations serving as

good approximations of convex sets. The assumptions of the OA algorithm guarantee

that there exists a polyhedron 𝑃 such that the optimal objective value of MIOA(P)

matches the optimal objective value of MICONV, precisely at convergence. In the

case that MICONV has no feasible solution, these assumptions furthermore guarantee

that there exists an outer approximating polyhedron 𝑃 such that MIOA(P) has no

feasible solution. In Section 2.5, we discuss in more detail what may happen when

the assumptions fail, although even in the typical case when they are satisfied, these
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polyhedra may have exponentially many constraints. Indeed, there are known cases

where the OA algorithm requires 2𝑛 iterations to converge in R𝑛. In this section, we

review an illustrative case where the OA algorithm performs poorly and the techniques

from the literature that have been proposed to address this issue.

Figure 2-2 illustrates an example developed by Hijazi et al. [45], specifically the

problem,

min
𝑥

𝑐𝑇𝑥

s.t.
∑︁
𝑖∈J𝑛K

(︂
𝑥𝑖 −

1

2

)︂2

≤ 𝑛− 1

4
, (2.5)

𝑥 ∈ Z𝑛,0 ≤ 𝑥 ≤ 1,

which, regardless of the objective vector 𝑐, has no feasible solutions. Any polyhedral

approximation of the single convex constraint, a simple ball, requires 2𝑛 half-spaces

until the corresponding outer approximation problem MIOA(P) has no feasible solu-

tion. At this point the OA algorithm terminates reporting infeasibility.

Hijazi et al. propose a simple yet powerful reformulation that addresses this poor

convergence behavior. To motivate their reformulation, we recall a basic example

from linear programming. The ℓ1 unit ball, i.e., {𝑥 ∈ R𝑛 :
∑︀

𝑖∈J𝑛K |𝑥𝑖| ≤ 1}, is

representable as an intersection of half spaces in R𝑛, namely the 2𝑛 half spaces of the

form
∑︀

𝑖∈J𝑛K 𝑠𝑖𝑥𝑖 ≤ 1 where 𝑠𝑖 = ±1. This exponentially large representation of the

ℓ1 ball is seldom used in practice, however. Instead, it is common to introduce extra

variables 𝑧𝑖 with constraints

𝑧𝑖 ≥ 𝑥𝑖, 𝑧𝑖 ≥ −𝑥𝑖 for 𝑖 ∈ J𝑛K and
∑︁
𝑖∈J𝑛K

𝑧𝑖 ≤ 1. (2.6)

It is not difficult to show that ||𝑥||1 ≤ 1 if and only if there exist 𝑧 satisfying the

constraints (2.6). Note that these 2𝑛 + 1 constraints define a polyhedron in R2𝑛,

which we call an extended formulation of the ℓ1 ball because the ℓ1 ball is precisely the

projection of this polyhedron defined in (𝑥, 𝑧) space onto the space of 𝑥 variables. It is
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Figure 2-2: The example developed by Hijazi et al. [45] demonstrating the case where
the outer approximation algorithm requires 2𝑛 iterations to converge in dimension 𝑛.
The intersection of the ball with the integer lattice points (in black) is empty, yet any
polyhedral outer approximation of the ball in R𝑛 requires 2𝑛 hyperplanes before it has
an empty intersection with the integer lattice, because the line segments between any
two lattice points (one of which is drawn) intersect the ball. Hence, any hyperplane
can separate at most one lattice point from the ball, and we require 2𝑛 of these to
prove infeasibility.

well known that polyhedra, such as the ℓ1 ball, that require a large description as half-

spaces in R𝑛 might have a representation with many fewer half-spaces if additional

variables are introduced [68]. Note, in this case, that the extended formulation is

derived by introducing a variable 𝑧𝑖 to represent the epigraph {(𝑧, 𝑥) : |𝑥| ≤ 𝑧} of

each |𝑥𝑖| term, taking advantage of the fact that the ℓ1 ball can be represented as a

constraint on a sum of these univariate functions.

The solution proposed by Hijazi et al. and earlier by Tawarmalani and Sahini-

dis [83] follows this line of reasoning by introducing an extended formulation for the

polyhedral representation of the smooth ℓ2 ball. Analogously to the case of the ℓ1

ball, Hijazi et al. construct an outer-approximating polyhedron in R2𝑛 with 2𝑛 + 1

constraints which contains no integer points. By the previous discussion, we know

that the projection of this small polyhedron in R2𝑛 must have at least 2𝑛 inequalities

in R𝑛. Their solution precisely exploits the separability structure in the definition of
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the ℓ2 ball, introducing an extra variable 𝑧𝑖 for each term and solving instead,

min
𝑥,𝑧

𝑐𝑇𝑥

s.t.
∑︁
𝑖∈J𝑛K

𝑧𝑖 ≤
𝑛− 1

4
, (2.7)

𝑧𝑖 ≥
(︂
𝑥𝑖 −

1

2

)︂2

, ∀ 𝑖 ∈ J𝑛K

𝑥 ∈ Z𝑛,0 ≤ 𝑥 ≤ 1.

The OA algorithm applied to (2.7) proves infeasibility in 2 iterations because it

constructs polyhedral approximations (based on gradient inequalities (2.3)) to the

constraints in the (𝑥, 𝑧) space. More generally, Hijazi et al. and Tawarmalani and

Sahinidis propose to reformulate any convex constraint of the form
∑︀

𝑖 𝑓𝑖(𝑥𝑖) ≤ 𝑘 as∑︀
𝑖 𝑧𝑖 ≤ 𝑘 and 𝑧𝑖 ≥ 𝑓𝑖(𝑥𝑖) for each 𝑖 where 𝑓𝑖 are univariate convex functions. Just

by performing this simple transformation before providing the problem to the OA

algorithm, they are able to achieve impressive computational gains in reducing the

time to solution and number of iterations of the algorithm.

Building on the ideas of Hijazi et al. and Tawarmalani and Sahinidis, Vielma et

al. [88] propose an extended formulation for the second-order cone {(𝑟, 𝑡) ∈ R1+𝑛 :

||𝑡||2 ≤ 𝑟}, which is not immediately representable as a sum of univariate convex

functions. They recognize that the second-order cone is indeed representable as a

sum of bivariate convex functions, i.e.,
∑︀

𝑖∈J𝑛K 𝑡
2
𝑖 /𝑟 ≤ 𝑟, after squaring both sides and

dividing by 𝑟. They obtain an extended formulation by introducing auxiliary variables

𝑧𝑖 ≥ 𝑡2𝑖 /𝑟 and constrain
∑︀

𝑖∈J𝑛K 𝑧𝑖 ≤ 𝑡. This simple transformation was subsequently

implemented by commercial solvers for MISOCP like Gurobi [13], CPLEX [84], and

Xpress [5], yielding significant improvements on their internal and public benchmarks.

In spite of the promising computational results of Hijazi et al. first reported in 2011

and the more recent extension by Vielma et al., to our knowledge, MINOTAUR [59] is

the only convex MINLP solver which has (very recently) implemented these techniques

in an automated way. To understand why others like Bonmin [14] have not done

so, it is important to realize that convex MINLP solvers historically have had no
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concept of the mathematical or algebraic structure behind their constraints, instead

viewing them through black-box oracles to query first-order and possibly second-order

derivative values. The summation structure we exploit, which is algebraic in nature,

is simply not available when viewed through this form, making it quite difficult to

retrofit this functionality into the existing architectures of convex MINLP solvers. In

the following section, we will propose a substantially different representation of MICP

problems that is a natural fit for extended formulations.

2.3 Disciplined Convex Programming (DCP) as a so-

lution

In order to implement the extended formulation proposal of [45] in an automated way,

one may be led to attempt a direct analysis of a user’s algebraic representation of the

convex constraints in a problem. However, this approach is far from straightforward.

First of all, the problem of convexity detection is necessary as a subroutine, because it

is only correct to exploit summation structure of a convex function ℎ(𝑥) = 𝑓(𝑥)+𝑔(𝑥)

when both 𝑓 and 𝑔 are convex. This is not a necessary condition for the convexity

of ℎ; consider 𝑓(𝑥) = 𝑥21 − 𝑥22 and 𝑔(𝑥) = 2𝑥22. Convexity detection of algebraic

expressions is NP-Hard [4], which poses challenges for implementing such an approach

in a reliable and scalable way. Ad-hoc approaches [32] are possible but are highly

sensitive to the form in which the user inputs the problem; for example, approaches

based on composition rules fail to recognize convexity of
√︀
𝑥21 + 𝑥22 and log(exp(𝑥1) +

exp(𝑥2)) [83].

Instead of attempting such analyses of arbitrary algebraic representations of con-

vex functions, we propose to use the modeling concept of disciplined convex program-

ming (DCP) first proposed by Grant, Boyd, and Ye [40, 39]. In short, DCP solves

the problem of convexity detection by asking users to express convex constraints in

such a way that convexity is proven by composition rules, which are sufficient but not

necessary. These composition rules are those from basic convex analysis, for example,
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the sum of convex functions is convex, the point-wise maximum of convex functions

is convex, and the composition 𝑓(𝑔(𝑥)) is convex when 𝑓 is convex and nondecreasing

and 𝑔 is convex. The full set of DCP rules is reviewed in [40, 81].

Even though it is possible to write down convex functions which do not satisfy

these composition rules, the DCP philosophy is to disallow them and instead introduce

new atoms (or basic operations) which users must use when writing down their model.

For example, logsumexp(𝑥1, 𝑥2) replaces log(exp(𝑥1) + exp(𝑥2)) and norm(𝑥1, 𝑥2) re-

places
√︀
𝑥21 + 𝑥22. Although asking users to express their optimization problems in

this form breaks away from the traditional setting of convex MINLP, DCP also for-

malizes the folklore within the convex MINLP community that the way in which you

write down the convex constraints can have a significant impact on the solution time;

see, e.g., Hijazi et al. [45] and our example later discussed in Equation 2.17.

The success over the past decade of the CVX software package [38] which im-

plements DCP has demonstrated that this modeling concept is practical. Users are

willing to learn the rules of DCP in order to gain access to powerful (continuous,

convex) solvers, and furthermore the number of basic atoms needed to cover nearly

all convex optimization problems of practical interest is relatively small.

Although we motivated DCP as a solution to the subproblem of convexity detec-

tion, it in fact provides a complete solution to the problem of automatically generating

an extended formulation and encoding it in a computationally convenient form given

a user’s algebraic representation of a problem. All DCP-valid expressions are compo-

sitions of basic operations (atoms); for example the expression max{exp(𝑥2),−2𝑥} is

DCP-valid because the basic composition rules prove its convexity. A lesser-known

aspect of DCP is that these rules of composition have a 1-1 correspondence with

extended formulations based on the epigraphs of the atoms. Observe, for example,

that

𝑡 ≥ max{exp(𝑥2),−2𝑥} (2.8)

if and only if

𝑡 ≥ exp(𝑥2), 𝑡 ≥ −2𝑥 (2.9)
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if and only if there exists 𝑠 such that

𝑠 ≥ 𝑥2, 𝑡 ≥ exp(𝑠), 𝑡 ≥ −2𝑥, (2.10)

where the validity of the latter transformation holds precisely because exp(·) is in-

creasing and therefore 𝑠 ≥ 𝑥2 implies exp(𝑠) ≥ exp(𝑥2). Furthermore, the constraints

𝑠 ≥ 𝑥2 and 𝑡 ≥ exp(𝑠) are convex because square and exp are convex functions;

hence (2.10) is a convex extended formulation of (2.8). Note that while we previously

discussed extended formulations derived only from disaggregating sums, disaggregat-

ing compositions of functions in this form also yields stronger polyhedral approxi-

mations [83]. The existence of this extended formulation is no coincidence. Grant

and Boyd [39] explain that a tractable representation of the epigraph of an atom is

sufficient to incorporate it into a DCP modeling framework. That is, if an imple-

mentation of DCP knows how to optimize over a model with the constraint 𝑡 ≥ 𝑓(𝑥)

for some convex function 𝑓 , then 𝑓 can be incorporated as an atom within the DCP

framework and used within much more complex expressions so long as they follow

the DCP composition rules.

Our analysis of DCP has led us to the conclusion that DCP provides the means

to automate the generation of extended formulations in a way that has never been

done in the context of MICP. Users need only express their MICP problem by using a

DCP modeling language like CVX or more recent implementations like CVXPY [26]

(in Python), or Convex.jl [85] (in Julia). Any DCP-compatible model is convex by

construction and emits an extended formulation that can safely disaggregate sums

and more complex compositions of functions.

We do note that in some cases it may not be obvious how to write a known convex

function in DCP form. In our initial work translating convex MINLP benchmark in-

stances into DCP form, we were unable to find a DCP representation of the univariate

concave function 𝑥
𝑥+1

which is not in DCP form because division of affine expressions

is neither convex nor concave in general. Fortunately, a reviewer suggested rewriting
𝑥

𝑥+1
= 1− 1

𝑥+1
where 1

𝑥+1
is a DCP-recognized convex function so long as 𝑥 + 1 ≥ 0.
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With this trick we were able to translate all of the benchmark instances we considered

into DCP form, as we discuss in more details in the following section.

2.4 MIDCP and conic representability

While DCP modeling languages have traditionally supported only convex problems,

CVX recently added support for mixed-integer convex problems under the name of

MIDCP, and the subsequently-developed DCP modeling languages also support in-

tegrality constraints. We will use the terminology MIDCP to refer to MICP models

expressed in DCP form. In the previous section we argued that an MIDCP repre-

sentation of an MICP problem provides sufficient information to construct an ex-

tended formulation, which in turn could be used to accelerate the convergence of the

outer approximation algorithm by providing strong polyhedral approximations. How-

ever, an MIDCP representation is quite complex, much more so than the “black-box”

derivative-based representation that traditional convex MINLP solvers work with.

Handling the MIDCP form requires understanding each atom within the DCP library

and manipulating the expression graph data structures which are used to represent

the user’s algebraic expressions.

It turns out that there is a representation of MIDCP models which is much more

compact and convenient for use as an input format for an MICP solver, and this

is as mixed-integer conic optimization problems. Before stating the form of these

problems, we first consider the standard continuous conic optimization problem:

min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏 (CONE)

𝑥 ∈ 𝒦,

where 𝒦 ⊆ R𝑛 is a closed convex cone. A simple example of a cone is the nonnegative

orthant R𝑛
+ = {𝑥 ∈ R𝑛 : 𝑥 ≥ 0}. When 𝒦 = R𝑛

+ then (CONE) reduces to a linear

programming problem. Typically, 𝒦 is a product of cones 𝒦1 ×𝒦2 × · · · ×𝒦𝑟, where
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each 𝒦𝑖 is one of a small number of recognized cones.

One of Grant et al.’s original motivations for developing the DCP framework was

to provide access to powerful solvers for the second-order cone (SOC) [60],

ℒ1+𝑛 =
{︀

(𝑟, 𝑡) ∈ R1+𝑛 : 𝑟 ≥ ‖𝑡‖2
}︀
, (2.11)

and the cone of positive semidefinite matrices,

PSD𝑛 = {𝐴 ∈ R𝑛×𝑛 : 𝐴 = 𝐴𝑇 ,𝑥𝑇𝐴𝑥 ≥ 0∀𝑥 ∈ R𝑛}. (2.12)

CVX, for example, does not use smooth, derivative-based representations of the

epigraphs of atoms but instead uses a conic representation of each of its atoms. For

instance, for 𝑥, 𝑦 ≥ 0 the epigraph of the negated geometric mean 𝑓(𝑥, 𝑦) = −√𝑥𝑦 is

a convex set representable as 𝑡 ≥ −√𝑥𝑦 iff ∃ 𝑧 ≥ 0 such that −𝑡 ≤ 𝑧 ≤ √𝑥𝑦 iff

− 𝑡 ≤ 𝑧 and 𝑧2 ≤ 𝑥𝑦 iff − 𝑡 ≤ 𝑧 and (𝑥/
√

2, 𝑦/
√

2, 𝑧) ∈ 𝒱3, (2.13)

where

𝒱2+𝑛 =
{︀

(𝑟, 𝑠, 𝑡) ∈ R2+𝑛 : 𝑟, 𝑠 ≥ 0, 2𝑟𝑠 ≥ ‖𝑡‖22
}︀

(2.14)

is the 𝑛-dimensional rotated second-order cone, a common cone useful for modeling

(e.g., functions like 𝑥2) which itself is representable as a transformation of the second-

order cone [6]. While this conic representation of the geometric mean is known in

the literature [6], it is arguably unnecessarily complex for modelers to understand,

and CVX, for example, provides a geo_mean atom which transparently handles this

transformation.

Subsequent to the second-order and positive semidefinite cones, researchers have

investigated the exponential cone [80],

ℰ = cl

(︂{︂
(𝑟, 𝑠, 𝑡) ∈ R3 : 𝑠 > 0, 𝑟 ≥ 𝑠 exp

(︂
𝑡

𝑠

)︂}︂)︂
, (2.15)
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Table 2.1: A categorization of the 333 MICP instances in the MINLPLIB2 library
according to conic representability. Over two thirds are pure MISOCP problems and
nearly one third is representable by using the exponential (EXP) cone alone. All
instances are representable by using standard cones.

SOC only EXP only SOC and EXP POW only Not representable Total
217 107 7 2 0 333

and the power cone [44],

POW𝛼 = {(𝑥, 𝑦, 𝑧) ∈ R3 : |𝑧| ≤ 𝑥𝛼𝑦1−𝛼, 𝑥 ≥ 0, 𝑦 ≥ 0}, (2.16)

which can be used to represent functions like entropy (−𝑥 log(𝑥)) and fractional pow-

ers, respectively. This small collection of cones is sufficient to represent any convex

optimization problem which you may input within existing DCP implementations,

including CVX.

In the context of MICP, these cones are indeed sufficient from our experience.

We classified all 333 convex MINLP instances from the MINLPLIB2 benchmark li-

brary [89] and found that 217 are representable by using purely second-order cones

(and so fall under the previously mentioned MISOCP problem class), 107 are rep-

resentable by using purely exponential cones, and the remaining by some mix of

second-order, exponential, and power cones; see Table 2.1. No instances require the

PSD cone, because mixed-integer semidefinite programming (MISDP) falls outside of

the scope of traditional convex MINLP. Of particular note are the trimloss [43] family

of instances which have constraints of the form,

∑︁
𝑘∈J𝑞K
−√𝑥𝑘𝑦𝑘 ≤ 𝑐𝑇𝑧 + 𝑏. (2.17)

Prior to our report in [63], the tls5 and tls6 instances had been unsolved since 2001.

By directly rewriting these problems into MIDCP form, we obtained an MISOCP

representation because all constraints are representable by using second-order cones,

precisely by using the transformation of the geometric mean discussed above. Once

in MISOCP form, we provided the problem to Gurobi 6.0, which was able to solve
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them to global optimality within a day, indicating the value of conic formulations.

Given that DCP provides an infrastructure to translate convex problems into conic

form, we may consider mixed-integer conic problems as a compact representation of

MIDCP problems. Below, we state our standard form (in the scope of this chapter)

for mixed-integer conic problems,

min
𝑥,𝑧

𝑐𝑇𝑧

s.t. 𝐴𝑥𝑥+𝐴𝑧𝑧 = 𝑏 (MICONE)

𝐿 ≤ 𝑥 ≤ 𝑈 ,𝑥 ∈ Z𝑛, 𝑧 ∈ 𝒦,

where 𝒦 ⊆ R𝑘 is a closed convex cone. Without loss of generality, we assume integer-

constrained variables are not restricted to belong to cones, since we may introduce

corresponding continuous variables by equality constraints. In Section 2.5 we discuss

solving MICONE via polyhedral outer approximation.

2.5 Outer approximation algorithm for mixed-integer

conic problems

The observations of the previous section motivated the development of a solver for

problems of the form MICONE. We note that the traditional convergence theory is

generally insufficient because it assumes differentiability, while conic problems have

nondifferentiability that is sometimes intrinsic to the model. Nonsmooth perspective

functions like 𝑓(𝑥, 𝑦) = 𝑥2/𝑦, for example, which are used in disjunctive convex opti-

mization [19], have been particularly challenging for derivative-based convex MINLP

solvers and have motivated smooth approximations [41]. On the other hand, conic

form can handle these nonsmooth functions in a natural way, so long as there is a

solver capable of solving the continuous conic relaxations.

In this section, we present the first OA algorithm with finite-time convergence

guarantees for problems of the form MICONE. The convergence guarantees depend
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on two necessary assumptions, first on the existence of finite bounds on the integer-

constrained variables, and second on strong duality holding in certain convex sub-

problems. We provide convergence counterexamples when each of these assumptions

does not hold.

We begin with the definition of dual cones.

Definition 2. Given a cone 𝒦, we define 𝒦* := {𝛽 ∈ R𝑘 : 𝛽𝑇𝑧 ≥ 0 ∀𝑧 ∈ 𝒦} as the

dual cone of 𝒦.

Dual cones provide an equivalent outer description of any closed, convex cone, as

the following lemma states. We refer readers to [6] for the proof.

Lemma 2. Let 𝒦 be a closed, convex cone. Then 𝑧 ∈ 𝒦 iff 𝑧𝑇𝛽 ≥ 0 ∀𝛽 ∈ 𝒦*.

We note that the second-order cone ℒ, the rotated second order cone 𝒱 (2.14),

and the cone of positive semidefinite matrices are self-dual, which means that the dual

cone and the original cone are the same [6]. While the exponential and power cones

are not self-dual, the discussions that follow are valid for them and other general

cones.

Based on the above lemma, we state the analogue of the MILP relaxation

MIOA(P) for (MICONE) as

min
𝑥,𝑧

𝑐𝑇𝑧

s.t. 𝐴𝑥𝑥+𝐴𝑧𝑧 = 𝑏 (MICONEOA(T))

𝐿 ≤ 𝑥 ≤ 𝑈 ,𝑥 ∈ Z𝑛,

𝛽𝑇𝑧 ≥ 0 ∀𝛽 ∈ 𝑇.

Note that if 𝑇 = 𝒦*, MICONEOA(T) is an equivalent semi-infinite representation

of (MICONE). If 𝑇 ⊂ 𝒦* and |𝑇 | < ∞ then MICONEOA(T) is an MILP outer

approximation of (MICONE) whose objective value is a lower bound on the optimal

value of (MICONE). In the context of the discussion in Section 2.1, given 𝑇 , our

polyhedral approximation of 𝒦 is 𝑃𝑇 = {𝑧 : 𝛽𝑇𝑧 ≥ 0 ∀𝛽 ∈ 𝑇}, and we explicitly

treat the linear equality constraints separately.
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In the conic setting, we state the continuous subproblem CONV(𝑥*
J𝐼K) with integer

values fixed as

𝑣𝑥* = min
𝑧

𝑐𝑇𝑧

s.t. 𝐴𝑧𝑧 = 𝑏−𝐴𝑥𝑥*, (CONE(𝑥*))

𝑧 ∈ 𝒦.

Using conic duality, we obtain the dual of CONE(𝑥*) as

max
𝛽,𝜆

𝜆𝑇 (𝑏−𝐴𝑥𝑥*)

s.t. 𝛽 = 𝑐− (𝐴𝑧)𝑇𝜆 (2.18)

𝛽 ∈ 𝒦*.

Under the assumptions of strong duality, the optimal solutions 𝛽 to the dual

problem (2.18) correspond precisely to the half-spaces which ensure the conditions

in Lemma 1 when CONE(𝑥*) is feasible; hence, we add these solutions to the set

𝑇 . When CONE(𝑥*) is infeasible and (2.18) is unbounded, the rays of (2.18) provide

solutions that satisfy (2.4), guaranteeing finite convergence of the OA algorithm. The

following two lemmas prove these statements.

Lemma 3. Given 𝑥*, assume CONE(𝑥*) is feasible and strong duality holds at the

optimal primal-dual solution (𝑧*,𝛽*,𝜆*). Then for any 𝑧 with 𝐴𝑧𝑧 = 𝑏−𝐴𝑥𝑥* and

(𝛽*)𝑇𝑧 ≥ 0, we have 𝑐𝑇𝑧 ≥ 𝑣𝑥*.

Proof.

(𝛽*)𝑇𝑧 = (𝑐− (𝐴𝑧)𝑇𝜆*)𝑇𝑧 = 𝑐𝑇𝑧 − (𝜆*)𝑇 (𝑏−𝐴𝑥𝑥*) = 𝑐𝑇𝑧 − 𝑣𝑥* ≥ 0. (2.19)

Lemma 4. Given 𝑥*, assume CONE(𝑥*) is infeasible and (2.18) is unbounded, such

that we have a ray (𝛽*,𝜆*) satisfying 𝛽* ∈ 𝒦*, 𝛽* = −(𝐴𝑧)𝑇𝜆*, and (𝜆*)𝑇 (𝑏 −
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𝐴𝑥𝑥*) > 0. Then for any 𝑧 satisfying 𝐴𝑧𝑧 = 𝑏−𝐴𝑥𝑥* we have (𝛽*)𝑇𝑧 < 0.

Proof.

(𝛽*)𝑇𝑧 = −(𝜆*)𝑇𝐴𝑧𝑧 = −(𝜆*)𝑇 (𝑏−𝐴𝑥𝑥*) < 0. (2.20)

We restate Algorithm 1 specialized for the conic case as Algorithm 2. In Chap-

ter 3 we develop methods for initializing 𝑇 , in particular so that MICONEOA(T) is

bounded.

Algorithm 2 The conic polyhedral outer approximation (OA) algorithm
Initialize: 𝑧𝑈 ←∞, 𝑧𝐿 ← −∞, 𝑇 ← ∅. Fix convergence tolerance 𝜖.
while 𝑧𝑈 − 𝑧𝐿 ≥ 𝜖 do

Solve MICONEOA(T).
if MICONEOA(T) is infeasible then

MICONE is infeasible, so terminate.
end if
Let (𝑥*, 𝑧′) be the optimal solution of MICONEOA(T) with objective value 𝑤𝑇 .
Update lower bound 𝑧𝐿 ← 𝑤𝑇 .
Solve CONE(𝑥*).
if CONE(𝑥*) is feasible then

Let (𝑧*,𝛽*,𝜆*) be an optimal primal-dual solution with objective value 𝑣𝑥* .
if 𝑣𝑥* < 𝑧𝑈 then

𝑧𝑈 ← 𝑣𝑥*

Record (𝑥*, 𝑧*) as the best known solution.
end if

else if CONE(𝑥*) is infeasible then
Let (𝛽*,𝜆*) be a ray of (2.18).

end if
𝑇 ← 𝑇 ∪ {𝛽*}

end while

In contrast to the OA algorithm developed by Drewes and Ulbrich [29] for the

special case of MISOCP, Algorithm 2 is arguably much simpler because it is based on

conic duality instead of subgradients and the KKT conditions. Drewes and Ulbrich

also propose a second subproblem when infeasibility occurs even though rays of the

dual would suffice.
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2.5.1 Failures of outer approximation

When the assumption of strong duality fails, it may be impossible for the OA algo-

rithm to converge in a finite number of iterations.

Consider the problem adapted from [46],

min 𝑧

s.t. 𝑥 = 0,

(𝑥, 𝑦, 𝑧) ∈ 𝒱3.

(2.21)

Note that (0, 𝑦, 𝑧) ∈ 𝒱3 implies 𝑧 = 0, so the optimal value is trivially zero.

The conic dual of this problem is

max 0

s.t. (𝛽, 0, 1) ∈ 𝒱3,

𝛽 ∈ R.

(2.22)

The dual is infeasible because there is no 𝛽 satisfying 0𝛽 ≥ 1. So there is no

strong duality in this case. The following lemma demonstrates that polyhedral ap-

proximations fail entirely. The proof uses only basic results from linear programming

and conic duality.

Lemma 5. There is no polyhedral outer approximation 𝑃𝒱 ⊃ 𝒱3 such that the fol-

lowing relaxation of (2.21) is bounded:

min 𝑧

s.t. 𝑥 = 0,

(𝑥, 𝑦, 𝑧) ∈ 𝑃𝒱 .

(2.23)

Proof. Let us assume that 𝒱3 ⊂ 𝑃𝒱 := {(𝑥, 𝑦, 𝑧) : 𝑎𝑥𝑥 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧 ≥ 0} for some

vectors 𝑎𝑥,𝑎𝑦, 𝑎𝑧. The right-hand side can be taken to be zero because 𝒱3 is a cone.

Specifically, positive right-hand-side values are invalid because they would cut off the

point (0, 0, 0), and negative values can be strengthened to zero. Since (2.23) is a linear
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programming problem invariant to positive rescaling, it is bounded iff there exists a

feasible dual solution (𝛽,𝛼) satisfying

𝛼𝑇𝑎𝑥 = 𝛽, (2.24)

𝛼𝑇𝑎𝑦 = 0, (2.25)

𝛼𝑇𝑎𝑧 = 1, (2.26)

𝛼 ≥ 0. (2.27)

Suppose, for contradiction, that there exist (𝛽, 𝛼) satisfying these dual feasibility

conditions. Let (𝑎𝑥𝑖 , 𝑎
𝑦
𝑖 , 𝑎

𝑧
𝑖 ) denote the coefficients of the 𝑖th linear inequality in 𝑃𝒱 .

Since 𝑃𝒱 is a valid outer approximation, we have that

𝑎𝑥𝑖 𝑥+ 𝑎𝑦𝑖 𝑦 + 𝑎𝑖𝑧𝑧 ≥ 0, ∀(𝑥, 𝑦, 𝑧) ∈ 𝒱3, (2.28)

hence (𝑎𝑥𝑖 , 𝑎
𝑦
𝑖 , 𝑎

𝑧
𝑖 ) ∈ (𝒱3)* = 𝒱3, recalling that 𝒱3 is self-dual. Therefore we have

(𝛼𝑇𝑎𝑥,𝛼𝑇𝑎𝑦,𝛼𝑇𝑎𝑧) ∈ 𝒱3 (2.29)

for 𝛼 ≥ 0. This follows from the fact that the vector, (𝛼𝑇𝑎𝑥,𝛼𝑇𝑎𝑦,𝛼𝑇𝑎𝑧), is a

non-negative linear combination of elements of 𝒱3 and 𝒱3 is a convex cone. However,

the duality conditions imply (𝛽, 0, 1) ∈ 𝒱3, i.e., 0 ≥ 1, which is a contradiction.

Lemma 5 implies that the following MISOCP instance cannot be solved by the

OA algorithm:

min 𝑧

s.t. 𝑥 = 0,

(𝑥, 𝑦, 𝑧) ∈ 𝒱3,

𝑥 ∈ {0, 1},

(2.30)

because the optimal value of any MILP relaxation will be −∞ while the true optimal

objective is 0, hence the convergence conditions cannot be satisfied.
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This example strengthens the observation by [46] that MISOCP solvers may fail

when certain constraint qualifications do not hold. In fact, no approach based on

straightforward polyhedral approximation can succeed. Very recently, Gally et al. [35]

have studied conditions in the context of mixed-integer semidefinite optimization

which ensure that strong duality holds when integer values are fixed.

Another failure case is when we do not have finite bounds on the integer-constrained

variables. Consider the problem

min
𝑝,𝑞,𝑠

𝑠 : (2.31)

(𝑝+ 𝑞, 𝑠, 1) ∈ 𝒱3, (2.32)
1

2
− 𝑝 ∈ R+, (2.33)

(𝑝, 𝑞, 𝑠) ∈ Z3. (2.34)

One may verify that the optimal value of the problem is 1. Yet, for any polyhedral

outer approximation of 𝒱3, the solution (0, 𝑞, 0) is feasible to the MILP relaxation

for 𝑞 sufficiently large. Therefore the optimal value of MICONEOA(T) is at most

0. Furthermore, strong duality for CONE(𝑝, 𝑞, 𝑠) (in the form of either Lemma 3 or

Lemma 4) holds for any (𝑝, 𝑞, 𝑠) ∈ Z3.

2.6 Computational experiments

In this section we present numerical experiments with a prototype of Pajarito, an

open-source solver for MICP publicly released at https://github.com/JuliaOpt/

Pajarito.jl. The results here are based on Pajarito version 0.1. Subsequent to the

work we report here, Pajarito has been almost completely rewritten with significant

algorithmic advances; this will be described in Chapter 3.

We translated 194 convex instances of MINLPLIB2 [89] into Convex.jl [85], a

DCP algebraic modeling language in Julia which performs automatic transformation

into conic form. Our main points of comparison are Bonmin [14] using its OA al-

gorithm, SCIP [2] using its default LP-based branch-and-cut algorithm, and Artelys
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(a) Solution time (b) Number of OA iterations

Figure 2-3: Comparison performance profiles [27] (solver performs within a factor
of 𝜃 of the best on proportion 𝑝 of instances) over all instances we tested from the
MINLPLIB2 benchmark library. Higher is better. Bonmin is faster than Pajarito
often within a small factor, yet Pajarito is able to solve a few more instances overall
and with significantly fewer iterations.

Knitro [18] using its default nonlinear branch-and-bound algorithm; all three can be

considered state-of-the-art academic or commercial solvers. We further compare our

results with CPLEX for MISOCP instances only. All computations were performed on

a high-performance cluster at Los Alamos National Laboratory with Intelr Xeonr

E5-2687W v3 @3.10GHz 25.6MB L3 cache processors and 251GB DDR3 memory

installed on every node. CPLEX v12.6.2 is used as a MILP and MISOCP solver.

Because conic solvers supporting exponential cones were not sufficiently reliable in

our initial experiments, we use Artelys Knitro v9.1.0 to solve all conic subproblems

via traditional derivative-based methods.

Bonmin v1.8.3 and SCIP v3.2.0 are both compiled with CPLEX v12.6.2 and Ipopt

v3.12.3 using the HSL linear algebra library MA97. All solvers are set to a relative

optimality gap of 10−5, are run on a single thread (both CPLEX and Artelys Knitro),

and are given 10 hours of wall time limit (with the exception of gams01, a previously

unsolved benchmark instance, where we give 32 threads to CPLEX for the MILP

relaxations). The scripts to run these experiments can be found online at https:

//github.com/mlubin/MICPExperiments.

Numerical experiments indicate that the extended formulation drastically reduces

the number of polyhedral OA iterations as expected. In aggregate across the instances
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Figure 2-4: Performance profile [27] (solver is the fastest within a factor of 𝜃 of the best
on proportion 𝑝 of instances) over the instances representable as mixed-integer second-
order cone problems where we can compare with the commercial CPLEX solver.
Higher is better. CPLEX is the best overall, since notably it already implements the
extended formulation proposed by Vielma et al. [88].

we tested, Bonmin requires 2685 iterations while Pajarito requires 994. We list the

full results in Table A.1 and summarize them in Figure 2-3. In Figure 2-4 we present

results for the subset of SOC-representable instances, where we can compare with

commercial MISOCP solvers. In our performance profiles, all times are shifted by 10

seconds to decrease the influence of easy instances, and iteration counts are similarly

shifted by 2.

Notably, Pajarito is able solve a previously unsolved instance, gams01, whose

conic representation requires a mix of SOC and EXP cones and hence was not a pure

MISOCP problem. The best known bound was 1735.06 and the best known solution

was 21516.83. Pajarito solved the instance to optimality with an objective value of

21380.20 in 6 iterations.
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Chapter 3

A conic framework for solving

mixed-integer convex problems via

outer approximation

3.1 Mixed-integer conic form and outer approxima-

tion

3.1.1 Mixed-integer conic (MICONE) general form M

We denote an MICONE problem in general form as M:

M ≡ min
𝑥∈R𝑁

⟨𝑐,𝑥⟩ : (3.1)

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K , (3.2)

𝑥𝑖 ∈ Z, ∀𝑖 ∈ J𝐼K . (3.3)

We assume throughout that if M is feasible, then its optimal value is attained,

hence we write min instead of inf in the objective. In this chapter we use the notation

⟨·, ·⟩ for the standard inner product of two vectors. The objective (3.1) therefore

minimizes ⟨𝑐,𝑥⟩ =
∑︀

𝑖∈J𝑁K 𝑐𝑖𝑥𝑖 over 𝑥 ∈ R𝑁 , subject to (denoted by ‘:’) the 𝑀 conic
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constraints (3.2) and the 𝐼 integrality constraints (3.3).

The conic constraints (3.2) express that for each 𝑘 ∈ J𝑀K, the vector-valued

affine transformation 𝑏𝑘 −𝐴𝑘𝑥 ∈ R𝑛𝑘 of 𝑥 ∈ R𝑁 is restricted to belong to the cone

𝒞𝑘 ⊂ R𝑛𝑘 . The cone 𝒞𝑘 must be a closed and convex cone. Definitions and example

cones will be given in Section 3.1.2. For consistency, affine constraints that would

normally be expressed with equality and inequality notation are instead encoded

conically using the basic polyhedral cones R𝑛
+ = {𝑦 ∈ R𝑛 : 𝑦 ≥ 0} (nonnegative

cone), R− = {𝑦 ∈ R𝑛 : 𝑦 ≤ 0} (nonpositive cone), or {0}𝑛 (zero cone).

The set of integers is denoted Z, so the integrality constraints (3.3) restrict the

variables 𝑥1, . . . , 𝑥𝐼 to integer values. The variables 𝑥𝐼+1, . . . , 𝑥𝑁 are continuous-

valued. If 𝐼 = 0 (no integrality constraints), M is a convex optimization problem

because it minimizes the linear objective (3.1) over continuous variables 𝑥 subject to

convex constraints (3.2).

The form M is also general. A maximization problem may be converted to a

minimization problem. Variable bounds on 𝑥 can be incorporated into the conic con-

straints using R+ or R−. Binary restrictions on variables can be encoded using both

integer restrictions and variable bounds. M expresses established problem classes

such as MILP, MISOCP, and MISDP.

3.1.2 Four versatile cones for convex nonlinear modeling

We have already mentioned the basic polyhedral cones, R+, R−, and {0}. Any mixed-

integer linear program (MILP) can be written in the form M using these basic polyhe-

dral cones. Beyond these polyhedral cones, we reintroduce (from Chapter 2) several

additional cones that are particularly versatile for convex nonlinear optimization mod-

eling. We often omit the dimension parameter of the cone when it is implied by the

context.
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The second-order ℒ and rotated second-order 𝒱 Cones

The second-order cone is useful for modeling the ℓ2-norm and many other convex

functions; see [6]. It is typically defined as:

ℒ1+𝑛 =
{︀

(𝑟, 𝑡) ∈ R1+𝑛 : 𝑟 ≥ ‖𝑡‖2
}︀
. (3.4)

The rotated second-order cone is useful for modeling functions like 𝑥2 and
√
𝑥1𝑥2;

see [6]:

𝒱2+𝑛 =
{︀

(𝑟, 𝑠, 𝑡) ∈ R2+𝑛 : 𝑟, 𝑠 ≥ 0, 2𝑟𝑠 ≥ ‖𝑡‖22
}︀
. (3.5)

As its name suggests, the rotated second-order cone 𝒱2+𝑛 is an invertible linear

transformation of the second-order cone ℒ2+𝑛 [71]:

(𝑟, 𝑠, 𝑡) ∈ 𝒱2+𝑛 ⇔
(︂
𝑟 + 𝑠√

2
,
𝑟 − 𝑠√

2
, 𝑡

)︂
∈ ℒ2+𝑛. (3.6)

Thus for M we can restrict attention to the second-order cone by applying this

transformation to any rotated second-order cone constraint 𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒱 . However,

we will use the definition of 𝒱 again when we address disaggregation in Section 3.5.3

and 𝒱 cuts for outer approximation in Section 3.5.2.

Positive semidefinite cone in “svec” 𝒫 and “smat” S+ forms

Modeling with the positive semidefinite (PSD) matrix cone is described extensively

in [6]. This cone is typically thought of as a subset of the space of either square

matrices R𝑛×𝑛 or symmetric matrices S𝑛 =
{︀
𝑇 ∈ R𝑛×𝑛 : 𝑇 = 𝑇 𝑇

}︀
. We use the latter

convention for good reason: in the space of symmetric matrices, we do not need to

enforce symmetry constraints, and the cone has effective dimension 1
2
𝑛(𝑛+ 1) rather

than 𝑛2. The matrix cone in symmetric space can be defined in multiple equivalent
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ways, for example using the minimum eigenvalue function 𝜆min:

S𝑛
+ = {𝑇 ∈ S𝑛 : 𝜆min(𝑇 ) ≥ 0} . (3.7)

This symmetric space definition is called the ‘smat’ PSD cone and we write 𝑇 ∈

S𝑛
+ ⊂ S𝑛 and use the standard matrix/trace inner product ⟨𝑊 ,𝑇 ⟩ =

∑︀
𝑖,𝑗∈[𝑛]𝑊𝑖𝑗𝑇𝑖𝑗.

The equivalent vector space definition is called the ‘svec’ PSD cone and we write

𝑡 ∈ 𝒫 1
2
𝑛(𝑛+1) ⊂ R 1

2
𝑛(𝑛+1) and use the vector inner product as described in Section 3.1.1.

The transformation is described by [71] as follows, for 𝑇 ∈ S𝑛 and 𝑡 ∈ R 1
2
𝑛(𝑛+1):

svec(𝑇 ) =
(︁
𝑇1,1,
√

2𝑇2,1, . . . ,
√

2𝑇𝑛,1, 𝑇2,2,
√

2𝑇3,2, . . . , 𝑇𝑛,𝑛

)︁
(3.8)

smat(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑡1

𝑡1√
2
· · · 𝑡𝑛√

2

𝑡2√
2

𝑡𝑛+1 · · · 𝑡2𝑛−1√
2

...
... . . . ...

𝑡𝑛√
2

𝑡𝑛−1√
2
· · · 𝑡 1

2
𝑛(𝑛+1)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.9)

It is often convenient to treat the PSD cone uniformly with other vector cones, so

in the general form M so we use the svec PSD cone 𝒫 . We convert from svec space

to smat space when notationally appropriate, such as when we want an eigendecom-

position.

The Exponential Cone ℰ

We use the following definition of the exponential cone:

ℰ = cl

(︂{︂
(𝑟, 𝑠, 𝑡) ∈ R3 : 𝑠 > 0, 𝑟 ≥ 𝑠 exp

(︂
𝑡

𝑠

)︂}︂)︂
(3.10)

= {(𝑟, 0, 𝑡) : 𝑟 ≥ 0, 𝑡 ≤ 0} ∪
{︂

(𝑟, 𝑠, 𝑡) : 𝑠 > 0, 𝑟 ≥ 𝑠 exp

(︂
𝑡

𝑠

)︂}︂
. (3.11)

This cone can be used to model functions such as 𝑒𝑥 (used interchangeably with

exp(𝑥)) and − log(𝑥), the negative entropy function −𝑥 log(𝑥), and the log-sum-exp
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function; see [80]. Chandrasekaran and Shah [20] recently showed that the ℒ cone is

representable by using the ℰ cone, and hence one could argue that the exponential

cone is more general than the second-order cone.

3.1.3 Outer approximation using dual cones

We assume the first 𝐾 of 𝑀 cones are nonlinear and the remaining are basic poly-

hedral cones. We now recall how to outer approximate the nonlinear cones using

polyhedra.

We begin with the definition of the dual cone 𝒦* ⊂ R𝑛 of a cone 𝒦 ⊂ R𝑛:

𝒦* = {𝑧 ∈ R𝑛 : ⟨𝑦, 𝑧⟩ ≥ 0,∀𝑦 ∈ 𝒦} . (3.12)

The dual cone of a product of cones 𝒦1×𝒦2 is the product of the individual dual

cones 𝒦*
1×𝒦*

2. An important property of dual cones is that if 𝒦 is closed and convex

then so is 𝒦*, and the following equivalence holds,

𝑦 ∈ 𝒦 ⇔ ⟨𝑦, 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝒦*. (3.13)

Often we will denote a vector of primal cone variables by 𝑦𝑘 = 𝑏𝑘−𝐴𝑘𝑥 ∈ 𝒞𝑘, and

a vector of dual cone variables by 𝑧𝑘 ∈ 𝒞*𝑘 . All of the example cones we offered, except

for the exponential cone ℰ , are ‘self-dual’, meaning that 𝒦* = 𝒦. For ℒ, we often write

the dual variables as (𝑢,𝑤) ∈ ℒ* = ℒ, and for 𝒱 , we write (𝑢, 𝑣,𝑤) ∈ 𝒱* = 𝒱 . For the

smat PSD cone, we write a symmetric matrix of dual variables as 𝑊 ∈ (S+)* = S+,

and for the svec PSD cone, we write a vector of dual variables as 𝑤 ∈ 𝒫* = 𝒫 . For

the exponential cone, the dual cone can be defined by:

ℰ* = cl
{︁

(𝑢, 𝑣, 𝑤) ∈ R3 : 𝑤 < 0, 𝑢 ≥ −𝑤 exp
(︁ 𝑣
𝑤
− 1
)︁}︁

(3.14)

= {(𝑢, 𝑣, 0) : 𝑢, 𝑣 ≥ 0} ∪
{︁

(𝑢, 𝑣, 𝑤) : 𝑤 < 0, 𝑢 ≥ −𝑤 exp
(︁ 𝑣
𝑤
− 1
)︁}︁

. (3.15)

For some 𝑘 ∈ J𝐾K, consider choosing a finite subset of the points in the dual
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cone and denote this subset 𝒵𝑘 ⊂ 𝒞*𝑘 . We can then construct a valid polyhedral outer

approximation of 𝒞𝑘 by enforcing the linear constraints corresponding to 𝑧 ∈ 𝒵𝑘, i.e.,

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧

⟩︀
∈ R+, ∀𝑧 ∈ 𝒵𝑘. (3.16)

Definition 3. For a given 𝑧 ∈ 𝒞*𝑘, we call a constraint of the form (3.16) a 𝒦* cut

induced by 𝑧.

In the next section we investigate how these cuts may be chosen.

3.2 Four simple classes of 𝒦* cuts

3.2.1 Initial fixed 𝒦* cuts

In this section we propose initial fixed 𝒦* cuts which depend only on the dimensions

𝑛𝑘 of the cones 𝒞𝑘, 𝑘 ∈ J𝐾K. Our goal here is not to define theoretically efficient initial

outer approximations, but instead to show that well-known outer approximations can

be interpreted in the framework of 𝒦* cuts.

Initial Fixed ℒ* Cuts

Ben-Tal and Nemirovski [9] describe polyhedral outer approximations of ℒ with prov-

ably good approximation guarantees. However, this family of polyhedral outer ap-

proximations requires additional auxiliary variables in a way that makes it difficult

to refine dynamically [87], so we do not consider them. The two simple classes of cuts

we consider are the variable bound 𝑟 ≥ 0 which is a 𝒦* cut because (1,0) ∈ ℒ* and

secondly, from the inequality

‖𝑡‖∞ = max
𝑖∈J𝑛K
|𝑡𝑖| ≥

√︃∑︁
𝑖∈J𝑛K

𝑡2𝑖 = ‖𝑡‖2, (3.17)
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we see that ‖𝑡‖∞ ≤ 𝑟 is a valid polyhedral outer approximation of ℒ. We can enforce

this initial polyhedral outer approximation with a set of 2𝑛 initial fixed ℒ* cuts:

(1,±𝑒(𝑖)) ∈ ℒ*, ∀𝑖 ∈ J𝑛K , (3.18)

which impose the conditions 𝑟 ≥ |𝑡𝑖|,∀𝑖 ∈ J𝑛K.

Initial Fixed 𝒫* Cuts

We impose the variable bounds that ensure the diagonal elements of 𝑇 ∈ S𝑛 are

nonnegative: 𝑇𝑖,𝑖 ∈ R+, 𝑖 ∈ J𝑛K (these are again 𝒦* cuts).

Ahmadi and Hall [3] discuss polyhedral outer approximations of the PSD cone.

They define the cone of diagonally dominant matrices, an important subset of the

PSD cone, and use its dual cone as a fixed outer approximation of the PSD cone.

This dual cone is polyhedral and has 𝑛(𝑛 − 1) extreme rays. We add a 𝒦* cut for

each such extreme ray:

(𝑒(𝑖) + 𝑒(𝑗)) (𝑒(𝑖) + 𝑒(𝑗))𝑇 , (𝑒(𝑖)− 𝑒(𝑗)) (𝑒(𝑖)− 𝑒(𝑗))𝑇 ∈
(︀
S𝑛
+

)︀*
, ∀𝑖, 𝑗 ∈ J𝑛K : 𝑖 > 𝑗.

(3.19)

Initial Fixed ℰ* Cuts

We first impose the variable bounds 𝑟, 𝑠 ≥ 0 that are 𝒦* cuts because (1, 0, 0) ∈ ℰ*

and (0, 1, 0) ∈ ℰ*. We then pick points from ℰ* as follows.

Fix 𝑤 = −1 and consider the function exp(−𝑣 − 1). For the variable 𝑣, choose a

set of 𝐿 linearization points 𝑣𝑙 ∈ R, 𝑙 ∈ J𝐿K and obtain the 𝐿 𝒦* cuts defined by:

(exp(−𝑣𝑙 − 1), 𝑣𝑙,−1) ∈ ℰ*, ∀𝑙 ∈ J𝐿K . (3.20)

The linearization points 𝑣𝑙, 𝑙 ∈ J𝐿K could be chosen in various ways, for example,

according to the curvature of the function exp(−𝑣− 1) in order to guarantee a worst

case “distance” from the ℰ cone of any point feasible for the initial fixed polyhedral

outer approximation.
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3.2.2 𝒦* cuts from the continuous relaxation

We present here a family of cuts which, like the initial fixed cuts, can be computed

before solving a finite outer approximation model. Unlike the initial fixed cuts, how-

ever, these cuts can be shown to provide a guarantee on the objective value of the

finite outer approximation model. The cuts and corresponding proofs make use of

conic duality which we now briefly review; see [6, 17] for a fuller treatment.

Consider relaxing the integrality constraints of M to get the continuous relaxation

R:

R ≡ min
𝑥

⟨𝑐,𝑥⟩ : (3.21)

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K , (3.22)

𝑥 ∈ R𝑁 . (3.23)

The standard conic dual of R is R*:

R* ≡ max
(𝑧𝑘)𝑘∈J𝑀K

−
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
: (3.24)

𝑐+
∑︁

𝑘∈J𝑀K

(𝐴𝑘)𝑇𝑧𝑘 ∈ {0}𝑁 , (3.25)

𝑧𝑘 ∈ 𝒞*𝑘 , ∀𝑘 ∈ J𝑀K . (3.26)

Friberg [34] provides a mutually exclusive and exhaustive list of five possible sta-

tuses that may result from a conic primal-dual pair, all of which can be verified by

simple certificates. For the discussions that follow, we will assume for any conic prob-

lem we consider that either (i) there exists an optimal primal-dual pair, i.e., a pair

of solutions feasible to R and R* with matching objective values, or (ii) the primal

problem is infeasible and there exists a ray of the dual which certifies infeasibility.
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For R this infeasibility certificate has the form:

−
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
< 0, (3.27)

∑︁
𝑘∈J𝑀K

(𝐴𝑘)𝑇𝑧𝑘 ∈ {0}𝑁 , (3.28)

𝑧𝑘 ∈ 𝒞*𝑘 , ∀𝑘 ∈ J𝑀K . (3.29)

For simplicity, we assume that the relaxation R is bounded and attains an optimal

solution, and hence we can discard the possibility of a certificate of dual infeasibility.

It is also possible for there to be a positive duality gap between optimal solutions of

the primal and dual; we assume this is not the case as our methods can fail otherwise

(see Section 2.5.1). We proceed to the derivation of the cut.

The following lemma shows that the dual solutions to R serve as 𝒦* cuts which

imply optimality guarantees on 𝑥. Indeed, these cuts imply that a mixed-integer outer

approximation problem can obtain an objective value no worse than the continuous

relaxation R.

Lemma 6. Suppose strong duality holds for the primal-dual pair R and R*, and that

R* attains an optimal solution (𝑧𝑘)𝑘∈J𝑀K. Let 𝐶 be the optimal objective value (of

both the primal and dual). Suppose 𝑥 ∈ R𝑁 satisfies:

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
∈ R+, ∀𝑘 ∈ J𝑀K . (3.30)

Then ⟨𝑐,𝑥⟩ ≥ 𝐶.
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Proof.

⟨𝑐,𝑥⟩ − 𝐶 (3.31)

= ⟨𝑐,𝑥⟩+
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
(3.32)

=
∑︁

𝑘∈J𝑀K

⟨︀
𝑥,−(𝐴𝑘)𝑇𝑧𝑘

⟩︀
+
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
(3.33)

=
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
(3.34)

≥ 0. (3.35)

These cuts derived from the continuous relaxation R are analogous to those used

to initialize the outer approximation algorithm in BONMIN [14] for convex MINLP.

We believe that Lemma 6 is the first statement of these cuts in the context of mixed-

integer conic optimization. Recall that in our work in Chapter 2 we did not derive

methods for initializing the outer approximation.

3.2.3 𝒦* cuts from continuous subproblems

In Chapter 2 we proposed cuts that can be computed by solving a continuous conic

subproblem where all integer-restricted variables are fixed to a particular solution.

By considering more general box restrictions, we can make some new observations.

Both SCIP and Gurobi solve SOCP restrictions during their branch-and-bound im-

plementations as heuristics to find feasible solutions; however, the dual information

from these subproblems is completely discarded1. The 𝒦* cuts from the dual solution

to such conic restrictions are globally valid and, if added to the LP relaxation, contain

enough information to properly process a branch-and-bound node. See also [87].

Consider relaxing the integer constraints of M and restricting the integer-constrained

1Personal communication with Zonghao Gu of Gurobi and Felipe Serrano of ZIB
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variables to instead be contained in a box defined by vectors (𝑙,𝑢):

R(𝑙,𝑢) ≡ min
𝑥

⟨𝑐,𝑥⟩ : (3.36)

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K , (3.37)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.38)

𝑥 ∈ R𝑁 . (3.39)

After encoding the box constraints using the R+ cone, the conic dual of R(𝑙,𝑢)

is R*(𝑙,𝑢):

R*(𝑙,𝑢) ≡ max
𝑧1,...,𝑧𝐾 ,𝛼,𝛽

∑︁
𝑖∈J𝐼K

(𝑙𝑖𝛼𝑖 − 𝑢𝑖𝛽𝑖)−
∑︁

𝑘∈J𝑀K

⟨𝑏𝑘, 𝑧𝑘⟩ : (3.40)

𝑐+
∑︁
𝑖∈J𝐼K

(𝛽𝑖 − 𝛼𝑖)𝑒(𝑖) +
∑︁

𝑘∈J𝑀K

(𝐴𝑘)𝑇𝑧𝑘 ∈ {0}𝑁 , (3.41)

𝑧𝑘 ∈ 𝒞*𝑘 , ∀𝑘 ∈ J𝑀K ,

(3.42)

𝛼,𝛽 ∈ R𝐼
+. (3.43)

Optimality Subproblem 𝒦* Cuts

The following lemma shows that if there is an optimal solution and strong duality

holds for this primal-dual pair, the dual solution corresponds to 𝒦* cuts that enforce

an objective bound over the box defined by the vectors (𝑙,𝑢).

Lemma 7. Suppose strong duality holds and the dual R*(𝑙,𝑢) attains an optimal

solution
(︀
𝑧1, . . . ,𝑧𝐾 ,𝛼,𝛽

)︀
. Let 𝐶 be the optimal objective value (of both the primal

and dual). Suppose 𝑥 ∈ R𝑁 satisfies:

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.44)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.45)⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
∈ R+, ∀𝑘 ∈ J𝐾K . (3.46)
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Then ⟨𝑐,𝑥⟩ ≥ 𝐶.

Proof. This follows from Lemma 6 applied to R(𝑙,𝑢) and observing that 𝑏𝑘−𝐴𝑘𝑥 ∈

𝒞𝑘 for 𝑘 ∈ J𝑀K ∖ J𝐾K implies
⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
∈ R+ for 𝑘 ∈ J𝑀K ∖ J𝐾K and 𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖]

implies (−𝑙𝑖 + 𝑥𝑖)𝛼𝑖 ∈ R+ and (𝑢𝑖 − 𝑥𝑖)𝛽𝑖 ∈ R+.

Feasibility Subproblem 𝒦* Cuts

Suppose instead we have a certificate of infeasibility for R(𝑙,𝑢). Then that certificate

yields 𝒦* cuts that exclude all solutions when the integer variables are constrained

to be in the box defined by (𝑙,𝑢).

Lemma 8. Suppose R(𝑙,𝑢) is infeasible and we have a ray
(︀
(𝑧𝑘)𝑘∈J𝑀K,𝛼,𝛽

)︀
satis-

fying:

∑︁
𝑖∈J𝐼K

(𝛽𝑖 − 𝛼𝑖)𝑒(𝑖) +
∑︁
𝑘∈J𝐾K

(𝐴𝑘)𝑇𝑧𝑘 ∈ {0}𝑁 , (3.47)

∑︁
𝑖∈J𝐼K

(𝑢𝑖𝛽𝑖 − 𝑙𝑖𝛼𝑖) +
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
< 0. (3.48)

Then for all 𝑥 ∈ R𝑁 satisfying:

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.49)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.50)

there exists a 𝑘 ∈ J𝐾K such that
⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
< 0.
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Proof.

∑︁
𝑘∈J𝐾K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
(3.51)

≤
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
+
∑︁
𝑖∈J𝐼K

(−𝑙𝑖 + 𝑥𝑖)𝛼𝑖 +
∑︁
𝑖∈J𝐼K

(𝑢𝑖 − 𝑥𝑖)𝛽𝑖 (3.52)

=

⟨
𝑥,
∑︁
𝑖∈J𝐼K

(𝛼𝑖 − 𝛽𝑖)𝑒(𝑖)−
∑︁

𝑘∈J𝑀K

(𝐴𝑘)𝑇𝑧𝑘

⟩
+
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
+
∑︁
𝑖∈J𝐼K

(𝑢𝑖𝛽𝑖 − 𝑙𝑖𝛼𝑖)

(3.53)

=
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
+
∑︁
𝑖∈J𝐼K

(𝑢𝑖𝛽𝑖 − 𝑙𝑖𝛼𝑖) (3.54)

< 0. (3.55)

Hence, one of the terms in the sum (3.51) must be negative. The first inequality

follows from (3.49)-(3.49).

3.2.4 Separation 𝒦* cuts

Given a solution 𝑥 for which 𝑏𝑘 − 𝐴𝑘𝑥 ̸∈ 𝒞𝑘 for some 𝑘 ∈ J𝐾K, it is natural to

attempt to generate new 𝒦* cuts that exclude this solution to refine an existing

outer approximation. Iterating this procedure (until the violations become sufficiently

small) in the context of convex optimization is known generally as Kelley’s cutting-

plane method [50], the essence of which remains in use by state-of-the-art methods,

e.g., [10] for MISOCP. In this section we show how to derive cuts which separate an

infeasible solution from the set of feasible solutions, hence we call them separation

𝒦* cuts. Although these cuts are not required in the algorithms we propose, they

remain important for the purpose of comparison.

We begin with a trivial equivalence between separating hyperplanes and 𝒦* cuts,

which shows that any procedure that generates separating hyperplanes also generates

separation 𝒦* cuts.

Lemma 9. Let 𝒦 be a nonempty closed convex cone and let 𝑦 ̸∈ 𝒦. Suppose (𝑧, 𝜃)

defines a hyperplane that separates 𝑦 from 𝒦, i.e., ⟨𝑦, 𝑧⟩ < 𝜃 and ⟨𝑦, 𝑧⟩ ≥ 𝜃, ∀𝑦 ∈ 𝒦.
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Then 𝑧 ∈ 𝒦* and 𝑧 induces a 𝒦* cut that separates 𝑦 from 𝒦.

Proof. The optimal value of min𝑦∈𝒦 ⟨𝑧,𝑦⟩ is bounded below by 𝜃 and therefore must

be equal to zero (hence 𝜃 ≤ 0) since it is a homogeneous problem. Therefore ⟨𝑦, 𝑧⟩ ≥

0,∀𝑦 ∈ 𝒦 so 𝑧 ∈ 𝒦* by definition of 𝒦* and ⟨𝑦, 𝑧⟩ < 0 by 𝜃 ≤ 0.

More concretely, the specific closed convex cones which we offer as useful exam-

ples are all defined by 𝒦 = {𝑦 : 𝑓(𝑦) ≤ 0} for some positively homogeneous convex

function 𝑓 : R𝑛 → R ∪ {∞} whose values and subgradients we know how to com-

pute. (A positively homogeneous function satisfies 𝑓(𝛼𝑦) = 𝛼𝑓(𝑦) for 𝛼 ≥ 0.) The

following lemma shows that subgradients correspond to separation 𝒦* cuts whenever

0 < 𝑓(𝑦) <∞.

Lemma 10. Let 𝒦 be a nonempty closed convex cone defined by 𝒦 = {𝑦 : 𝑓(𝑦) ≤ 0}

where 𝑓 : R𝑛 → R ∪ {∞} is a homogeneous convex function. Then subgradients of 𝑓

correspond to 𝒦* cuts. Furthermore, when 𝑦 ̸∈ 𝒦 and 𝑓(𝑦) <∞, a subgradient of 𝑓

at 𝑦 corresponds to a 𝒦* cut which separates 𝑦 from 𝒦.

Proof. Let 𝑧 be a subgradient of 𝑓 at some point 𝑦 with 𝑓(𝑦) (For simplicity we have

assumed 𝑓(𝑦) <∞.) By definition of subgradient [6]:

𝑓(𝑦) ≥ 𝑓(𝑦) + ⟨𝑦 − 𝑦, 𝑧⟩ , ∀𝑦 ∈ R𝑛. (3.56)

We first claim that 𝑓(𝑦) − ⟨𝑦, 𝑧⟩ = 0. Rearranging the subgradient inequal-

ity (3.56), we obtain:

⟨𝑦, 𝑧⟩ − 𝑓(𝑦) ≤ ⟨𝑦, 𝑧⟩ − 𝑓(𝑦), ∀𝑦 ∈ R𝑛. (3.57)

Since the left-hand side is homogeneous, we can substitute 𝛼𝑦 for 𝑦 to see that

any solution except ⟨𝑦, 𝑧⟩ − 𝑓(𝑦) = 0 would lead to a contradiction for some choice

of 𝛼 ≥ 0.

Hence, the subgradient inequality reduces to:

𝑓(𝑦) ≥ ⟨𝑦, 𝑧⟩ , ∀𝑦 ∈ R𝑛. (3.58)
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Then 𝑦 ∈ 𝒦 implies ⟨𝑦, 𝑧⟩ ≤ 0, and so −𝑧 ∈ 𝒦*. Specifically, ⟨𝑦,−𝑧⟩ ≥ 0 is a 𝒦*

cut that separates 𝑦 from 𝒦 when 𝑓(𝑦) > 0 and 𝑧 is a subgradient of 𝑓 at 𝑦.

We proceed to give explicit formulas for separation 𝒦* cuts for the cones we

consider, including a case where we need special treatment because the homogeneous

function can take the value ∞.

Separation Cuts for ℒ

The second-order cone ℒ is defined by the homogeneous convex function 𝑓(𝑟, 𝑡) =

‖𝑡‖2 − 𝑟. Assuming 𝑟 ≥ 0 is enforced by initial cuts, 𝑓(𝑟, 𝑡) > 0 implies ‖𝑡‖2 > 0,

hence applying Lemma 10 we obtain the separation 𝒦* cut:

(︂
1,
−𝑡
‖𝑡‖2

)︂
∈ ℒ*. (3.59)

These separation cuts are commonly used across MISOCP solvers [10].

Separation Cuts for 𝒫

Suppose we have a solution 𝑡 ̸∈ 𝒫 . It is convenient to switch to smat space, so

let 𝑇 = smat(𝑡) ∈ S𝑛. 𝑇 ̸∈ S𝑛
+ implies 𝜆min(𝑇 ) < 0. Let 𝜏 be an eigenvector

corresponding to the smallest eigenvalue of 𝑇 . Then:

⟨︀
𝜏𝜏 𝑇 ,𝑇

⟩︀
= 𝜆min(𝑇 ) < 0, (3.60)

so 𝜏𝜏 𝑇 ∈ (S𝑛
+)* corresponds to a separation cut that excludes 𝑇 from 𝒫 . It can also

be seen that 𝜏𝜏 𝑇 is a subgradient of the homogeneous convex function −𝜆min which

defines the 𝒫 cone.

These separation cuts are used in SCIP-SDP [67], a general-purpose MISDP solver,

and in a specialized MISDP application by Nagarajan et al. [72].
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Separation Cuts for ℰ

The exponential cone ℰ requires more care. Instead of deriving separation cuts

through the homogeneous function definition, we present the following procedure.

We assume initial cuts enforce 𝑠 ≥ 0 and 𝑟 ≥ 0. Suppose we have a solution

(𝑟, 𝑠, 𝑡) ̸∈ ℰ with 𝑠 > 0, i.e., 𝑟 < 𝑠 exp
(︀
𝑡
𝑠

)︀
. The following 𝒦* cut is valid and separates

(𝑟, 𝑠, 𝑡) from ℰ :

(︂
1,
𝑡− 𝑠
𝑠

exp

(︂
𝑡

𝑠

)︂
,− exp

(︂
𝑡

𝑠

)︂)︂
∈ ℰ*. (3.61)

If 𝑠 = 0, (𝑟, 𝑠, 𝑡) ∈ ℰ iff 𝑟 ≥ 0 and 𝑡 ≤ 0, so assume we have (𝑟, 0, 𝑡) ̸∈ ℰ and 𝑡 > 0 and

𝑟 > 0. In this case the following cut is valid and separates the point (𝑟, 0, 𝑡):

(︂
𝑡

𝑟
,−2 log

(︂
𝑒1𝑡

2𝑟

)︂
,−2

)︂
∈ ℰ*. (3.62)

If we have (0, 0, 𝑡) ̸∈ ℰ (so 𝑡 > 0), then any initial cut of the form (3.20) separates the

point (0, 0, 𝑡).

3.3 A branch-and-bound outer approximation algo-

rithm

In this section we state a branch-and-bound algorithm for solving M to global op-

timality based on LP relaxations and subproblem cuts. Our algorithm is a conic

analogue of the Quesada and Grossmann [76] algorithm for convex MINLP. It differs

from the iterative OA algorithm presented in Chapter 2 in that we use a single search

tree instead of solving a sequence of MILP instances each with their own search tree.

Our intention is to present a simplified and correct algorithm; later we will discuss

how our implementation differs in some significant ways.

We assume that M is bounded, i.e., it has an optimal solution or it is infeasible,

and also that the continuous relaxation R is bounded. We assume that strong duality

holds for the relaxation and for any continuous subproblems. For convenience we also
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assume that we have explicit initial bounds 𝑙0,𝑢0 on the integer variables

We define the template LP subproblem that will be solved at each node of the

branch-and-bound tree (recalling that cones 𝐶𝑘 for 𝑘 ∈ J𝑀K ∖ J𝐾K are polyhedral):

P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) ≡ min
𝑥

⟨𝑐,𝑥⟩ : (3.63)⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
∈ R+, ∀𝑧𝑘 ∈ 𝒵𝑘, 𝑘 ∈ J𝐾K , (3.64)

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.65)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K . (3.66)

Algorithm 3 describes our LP-based branch-and-bound algorithm. We recursively

partition the possible assignments of integer variables by lower and upper bound

vectors. Note that P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) is always a lower bound on R(𝑙,𝑢), so it

can be used to prune the search tree analogously to the standard branch-and-bound

algorithm where R(𝑙,𝑢) would be solved at each node of the search tree. Specifically,

we can discard a branch of the search tree if P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) is infeasible or

returns a bound that is worse than a known upper bound given by a feasible solution.

Care must be taken, however, when the optimal solution to the LP is integer feasible.

In this case we solve a continuous subproblem with all integer variables fixed to the

values returned from the LP (regardless of 𝑙 and 𝑢 at the current node), add the

corresponding 𝒦* cuts globally, and re-insert the node into the processing queue. We

split the discussion of correctness into two cases:

∙ If 𝑙 = 𝑢 and the LP is feasible, then the node will be discarded when it is

next processed. The next time the LP is solved, either it will be infeasible or

it will (by Lemma 7) match the value of a known feasible solution which we

just obtained by solving R(𝑙,𝑢). (Of course, the extra LP solve in this case is

unnecessary and could be avoided with additional logic.)

∙ If the optimal solution to the LP is integer feasible and 𝑙 ̸= 𝑢, for correctness

it is sufficient to show that the node will be processed a finite number of times.

Consider the case where the optimal solution 𝑥 to the LP is integer feasible and
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we have already added the cuts corresponding to R(𝑥J𝐼K,𝑥J𝐼K). Then again by

Lemma 7 the objective value of the LP must be greater than or equal to the

value of a known feasible solution, so the corresponding branch of the search

tree will be discarded.

Algorithm 3 is minimal with respect to the 𝒦* cuts added in order to guarantee

finite-time convergence. It is valid, of course, to add additional 𝒦* cuts at any point in

the algorithm. In particular, solving the continuous subproblem R(𝑙,𝑢) and adding

the corresponding cuts at occasional nodes in the tree is analogous to the “hybrid”

algorithm for convex MINLP implemented in BONMIN [14].
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Algorithm 3 LP-based B&B algorithm for MICP
1: Solve relaxation R with objective value 𝐶R and optimal dual solution (𝑧𝑘)𝑘∈J𝑀K.
2: Initialize global upper bound: 𝑈 ←∞
3: Initialize 𝒦* cut sets: 𝒵1 ← {𝑧1}, . . . ,𝒵𝐾 ← {𝑧𝐾} (optionally include cuts from

Sec. 3.2.1)
4: Initialize node list: 𝒩 ← {(𝑙0,𝑢0, 𝐶R)}
5: while 𝒩 ̸= ∅ do
6: Select and remove a node (𝑙,𝑢, 𝐿) ∈ 𝒩 .
7: if 𝐿 ≥ 𝑈 then
8: continue
9: end if

10: Solve local LP relaxation P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢)
11: if P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) is feasible and has objective value 𝐿P < 𝑈 then
12: Let 𝑥 be an optimal solution of P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢)
13: if 𝑥𝑖 ∈ Z ∀𝑖 ∈ J𝐼K then
14: Solve continuous subproblem R(𝑥J𝐼K,𝑥J𝐼K)

15: Let (𝑧𝑘)𝑘∈J𝑀K be an optimal solution or ray of R*(𝑥J𝐼K,𝑥J𝐼K)

16: Update 𝒵𝑘 ← 𝒵𝑘 ∪ {𝑧𝑘} for 𝑘 ∈ J𝐾K.
17: if R(𝑥J𝐼K,𝑥J𝐼K) is feasible then
18: Let 𝑥̂ be an optimal solution of R(𝑥J𝐼K,𝑥J𝐼K)
19: if ⟨𝑐, 𝑥̂⟩ < 𝑈 then
20: Update 𝑈 ← ⟨𝑐, 𝑥̂⟩
21: end if
22: end if
23: 𝒩 ← 𝒩 ∪ {(𝑙,𝑢, ⟨𝑐,𝑥⟩)} ◁ Re-process this node
24: else ◁ 𝑙 ̸= 𝑢 – Branch
25: Pick 𝑖 ∈ J𝐼K with 𝑥𝑖 ̸∈ Z
26: 𝑙← 𝑙, 𝑢̂← 𝑢.
27: 𝑙̂𝑖 ← ⌊𝑥𝑖⌋+ 1
28: 𝑢̂𝑖 ← ⌊𝑥𝑖⌋
29: 𝒩 ← 𝒩 ∪ {(𝑙, 𝑢̂, ⟨𝑐,𝑥⟩), (𝑙,𝑢, ⟨𝑐,𝑥⟩)}
30: end if
31: end if
32: end while

3.4 Numerical scaling of subproblem 𝒦* cuts

So far we have assumed that all conic or LP subproblems are solved to an exact

optimal solution. In this section, we relax this assumption slightly and account for

small violations of the feasibility of the 𝒦* cuts in the solution returned by the LP

solver. We will show that under this more realistic, but still idealized, model of the

LP solver we can still guarantee convergence up to any positive relative gap tolerance
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(as we will define). Specifically, we suppose that the solutions to the LP subproblem

P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) satisfy

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
≥ −𝜖𝑓𝑒𝑎𝑠, ∀𝑧𝑘 ∈ 𝒵𝑘, 𝑘 ∈ J𝐾K , (3.67)

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.68)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.69)

for some absolute tolerance 𝜖𝑓𝑒𝑎𝑠. We assume that (3.68) and (3.69) are satisfied

exactly. The following two lemmas derive the proper scaling for subproblem cuts in

this setting.

Lemma 11. Suppose strong duality holds and the dual R*(𝑙,𝑢) attains an optimal

solution (𝑧1, . . . ,𝑧𝐾 ,𝛼,𝛽). Let 𝐶 be the optimal objective value (of both the primal

and dual). Let 𝜖𝑓𝑒𝑎𝑠 > 0, and 𝜖𝑟𝑒𝑙𝑜𝑝𝑡 > 0. Suppose 𝑥 ∈ R𝑁 satisfies:

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.70)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.71)⟨
𝑏𝑘 −𝐴𝑘𝑥,

(︂
𝜖𝑓𝑒𝑎𝑠𝐾

𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝐶|+ 10−5)

)︂
𝑧𝑘
⟩
≥ −𝜖𝑓𝑒𝑎𝑠, ∀𝑘 ∈ J𝐾K , (3.72)

then

𝐶 − ⟨𝑐,𝑥⟩
|𝐶|+ 10−5

≤ 𝜖𝑟𝑒𝑙𝑜𝑝𝑡. (3.73)

Proof. Suppose that

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝛼𝑧𝑘

⟩︀
≥ −𝜖𝑓𝑒𝑎𝑠, ∀𝑘 ∈ J𝐾K , (3.74)

for some 𝛼 > 0. Then:

𝐶 − ⟨𝑐,𝑥⟩ ≤ −
∑︁
𝑘∈J𝐾K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
≤ 𝐾𝜖𝑓𝑒𝑎𝑠

𝛼
. (3.75)

74



If we wish to imply (3.73) it suffices to enforce:

𝐾𝜖𝑓𝑒𝑎𝑠
𝛼(|𝐶|+ 10−5)

≤ 𝜖𝑟𝑒𝑙𝑜𝑝𝑡, (3.76)

which holds whenever:

𝛼 ≥ 𝜖𝑓𝑒𝑎𝑠𝐾

𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝐶|+ 10−5)
. (3.77)

Lemma 12. Suppose R(𝑙,𝑢) is infeasible and we have a ray
(︀
(𝑧𝑘)𝑘∈J𝑀K,𝛼,𝛽

)︀
satis-

fying:

∑︁
𝑖∈J𝐼K

(𝛽𝑖 − 𝛼𝑖)𝑒(𝑖) +
∑︁
𝑘∈J𝐾K

(𝐴𝑘)𝑇𝑧𝑘 ∈ {0}𝑁 , (3.78)

∑︁
𝑖∈J𝐼K

(𝑢𝑖𝛽𝑖 − 𝑙𝑖𝛼𝑖) +
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
= −𝛾, (3.79)

for some 𝛾 > 0. Then for all 𝑥 ∈ R𝑁 satisfying:

𝑏𝑘 −𝐴𝑘𝑥 ∈ 𝒞𝑘, ∀𝑘 ∈ J𝑀K ∖ J𝐾K , (3.80)

𝑥𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ J𝐼K , (3.81)

there exists a 𝑘 ∈ J𝐾K such that
⟨
𝑏𝑘 −𝐴𝑘𝑥, 𝐾

𝛾
𝑧𝑘
⟩
≤ −1.

Proof. This can be seen from:

∑︁
𝑘∈J𝐾K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
≤
∑︁

𝑘∈J𝑀K

⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
+
∑︁
𝑖∈J𝐼K

(−𝑙𝑖 + 𝑥𝑖)𝛼𝑖 +
∑︁
𝑖∈J𝐼K

(𝑢𝑖 − 𝑥𝑖)𝛽𝑖

(3.82)

= −𝛾, (3.83)

where the final equality follows from the proof of Lemma 8. There must be a 𝑘 ∈ J𝐾K

such that
⟨︀
𝑏𝑘 −𝐴𝑘𝑥, 𝑧𝑘

⟩︀
has less than or equal to the average value which is bounded
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by −𝛾
𝐾

.

In Algorithm 4 we adapt Algorithm 3 to handle cut scaling. To do so we need to

introduce a relative optimality tolerance, which we define as follows.

Definition 4. Let 𝜖𝑟𝑒𝑙𝑜𝑝𝑡 > 0. Let 𝑥 be a feasible solution to M and let 𝑇 be the

optimal objective value of M. We say that 𝑥 is optimal within relative tolerance

𝜖𝑟𝑒𝑙𝑜𝑝𝑡 if

⟨𝑐,𝑥⟩ − 𝑇
|⟨𝑐,𝑥⟩|+ 10−5

≤ 𝜖𝑟𝑒𝑙𝑜𝑝𝑡. (3.84)

In the following lemma we state precisely the guarantees on Algorithm 4.

Lemma 13. Let 0 < 𝜖𝑟𝑒𝑙𝑜𝑝𝑡 < 1 and 0 < 𝜖𝑓𝑒𝑎𝑠 < 1. When the LP subproblems enforce

feasibility of the 𝒦* cuts to the absolute tolerance 𝜖𝑓𝑒𝑎𝑠, i.e., (3.67), Algorithm 4

terminates in finite time either concluding that M is infeasible or returning a feasible

solution which is optimal within relative tolerance 𝜖𝑟𝑒𝑙𝑜𝑝𝑡.

Proof. Lemma 12 implies that the LP subproblem cannot return an integer solution

corresponding to an integer assignment for which the conic subproblem is infeasible

and for which we have already added corresponding scaled 𝒦* cuts. Condition (3.73)

implies that the condition 𝐿P < 𝑈 − 𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝑈 |+ 10−5) on Line 11 cannot hold if the

optimal solution of P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) is integral and we have already added scaled

𝒦* cuts corresponding to this feasible assignment for the conic subproblem. These

two observations imply that each node in the search tree is processed a finite number

of times.

It remains to show that we do not improperly discard branches of the search tree

because of the condition on Line 11. Let 𝑥 be the best feasible solution which the

algorithm terminates with. Clearly the upper bound 𝑈 always satisfies ⟨𝑐,𝑥⟩ ≤ 𝑈 , so

it always holds that ⟨𝑐,𝑥⟩ − 𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|⟨𝑐,𝑥⟩| + 10−5) ≤ 𝑈 − 𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝑈 | + 10−5) because

𝜖𝑟𝑒𝑙𝑜𝑝𝑡 < 1. If we discard a branch of the search tree because 𝐿P ≥ 𝑈−𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝑈 |+10−5)

then 𝐿P ≥ ⟨𝑐,𝑥⟩ − 𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|⟨𝑐,𝑥⟩|+ 10−5), and since 𝐿P remains a valid lower bound,

it follows that by discarding this branch, in the worst case we have discarded a
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Algorithm 4 LP-based B&B algorithm for MICP with relative gap and cut scaling
1: Solve relaxation R with objective value 𝐶R and optimal dual solution (𝑧𝑘)𝑘∈J𝑀K.
2: Initialize global upper bound: 𝑈 ←∞
3: Initialize 𝒦* cut sets: 𝒵1 ← {𝑧1}, . . . ,𝒵𝐾 ← {𝑧𝐾} (optionally include cuts from

Sec. 3.2.1)
4: Initialize node list: 𝒩 ← {(𝑙0,𝑢0, 𝐶R)}
5: while 𝒩 ̸= ∅ do
6: Select and remove a node (𝑙,𝑢, 𝐿) ∈ 𝒩 .
7: if 𝐿 ≥ 𝑈 then
8: continue
9: end if

10: Solve local LP relaxation P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) with relaxed feasibility (3.67)
11: if P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢) is feasible and has objective value 𝐿P < 𝑈−𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|𝑈 |+10−5)

then
12: Let 𝑥 be an optimal solution of P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢)
13: if 𝑥𝑖 ∈ Z ∀𝑖 ∈ J𝐼K then
14: Solve continuous subproblem R(𝑥J𝐼K,𝑥J𝐼K)

15: Let ((𝑧𝑘)𝑘∈J𝑀K,𝛼,𝛽) be an optimal solution or ray of R*(𝑥J𝐼K,𝑥J𝐼K)
16: if R(𝑥J𝐼K,𝑥J𝐼K) is feasible then
17: Let 𝑥̂ be an optimal solution of R(𝑥J𝐼K,𝑥J𝐼K)

18: Rescale 𝑧𝑘 ← 𝜖𝑓𝑒𝑎𝑠𝐾

𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|⟨𝑐,𝑥̂⟩|+10−5)
𝑧𝑘 for 𝑘 ∈ J𝐾K

19: if ⟨𝑐, 𝑥̂⟩ < 𝑈 then
20: Update 𝑈 ← ⟨𝑐, 𝑥̂⟩
21: end if
22: else
23: Let 𝛾 ←

∑︀
𝑘∈J𝑀K

⟨︀
𝑏𝑘, 𝑧𝑘

⟩︀
−
∑︀

𝑖∈J𝐼K(𝑙𝑖𝛼𝑖 − 𝑢𝑖𝛽𝑖)

24: Rescale 𝑧𝑘 ← 𝐾
𝛾 𝑧

𝑘 for 𝑘 ∈ J𝐾K
25: end if
26: Update 𝒵𝑘 ← 𝒵𝑘 ∪ {𝑧𝑘} for 𝑘 ∈ J𝐾K.
27: 𝒩 ← 𝒩 ∪ {(𝑙,𝑢, ⟨𝑐,𝑥⟩)} ◁ Re-process this node
28: else ◁ 𝑙 ̸= 𝑢 – Branch
29: Proceed as in Algorithm 3
30: end if
31: end if
32: end while

better feasible solution with objective value ⟨𝑐,𝑥⟩− 𝜖𝑟𝑒𝑙𝑜𝑝𝑡(|⟨𝑐,𝑥⟩|+ 10−5). Hence, by

definition 𝑥 is optimal within relative tolerance 𝜖𝑟𝑒𝑙𝑜𝑝𝑡.

As far as we are aware, such an analysis of OA approaches based on a LP solver

with a feasibility tolerance is novel in both the conic MICP and convex MINLP

settings. We believe that it is possible, but less straightforward, to develop a convex

MINLP analogue of the results in this section.
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3.5 Extensions of 𝒦* cuts

3.5.1 Extreme 𝒦* cuts

In this section we present an idea for decomposing a 𝒦* cut into sum of multiple 𝒦*

cuts, if possible, thereby obtaining a stronger outer approximation for 𝒦. The basic

idea is that if a cut is not an extreme ray of the cone 𝒦, then (by definition) it can

be written as a nonnegative combination of extreme rays of 𝒦. We can then add the

𝒦* cut for each of these extreme rays, and together, these ‘extreme’ 𝒦* cuts imply

(via the nonnegative combination) the original cut.

It is not hard to see that any points on the boundaries of the ℒ and ℰ cones except

0 are extreme rays. This is not the case for the 𝒫 cone, where the set of extreme rays

is the set of rank-one matrices [47]. We describe here how to obtain extreme 𝒦* cuts

for this important case.

Consider a positive semidefinite conic constraint in smat space: 𝑇 ∈ S𝑛
+. Suppose

we have a dual point 𝑊 ∈
(︀
S𝑛
+

)︀*
= S𝑛

+, which yields the standard 𝒦* cut ⟨𝑊 ,𝑇 ⟩ ∈

R+. Rather than add this single 𝒦* cut, we use the idea of extreme 𝒦* cuts to try to

get multiple stronger 𝒦* cuts.

Consider forming an eigendecomposition of 𝑊 ∈ S𝑛
+:

𝑊 =
∑︁
𝑖∈J𝑛K

𝜆𝑖𝜔
𝑖(𝜔𝑖)𝑇 , (3.85)

where for all 𝑖 ∈ J𝑛K, 𝜆𝑖 ≥ 0 is the 𝑖th eigenvalue and 𝜔𝑖 is the 𝑖th eigenvector of 𝑊 .

Note that:

𝜆𝑖𝜔
𝑖(𝜔𝑖)𝑇 ∈

(︀
S𝑛
+

)︀*
, ∀𝑖 ∈ J𝑛K , (3.86)

and furthermore for each 𝑖 : 𝜆𝑖 > 0, 𝜆𝑖𝜔𝑖(𝜔𝑖)𝑇 is a nonzero rank-1 PSD matrix, i.e.,

an extreme ray of the cone. Thus we replace 𝑊 with the following (up to 𝑛) extreme
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𝒦* cuts:

⟨︀
𝑇 , 𝜆𝑖𝜔

𝑖(𝜔𝑖)𝑇
⟩︀
∈ R+ ∀𝑖 ∈ J𝑛K : 𝜆𝑖 > 0. (3.87)

Aggregating these cuts by summing, we see that they imply the single 𝒦* cut

⟨𝑊 ,𝑇 ⟩ ∈ R+. Their validity is guaranteed by the fact that they themselves are 𝒦*

cuts, i.e. points of the dual cone.

3.5.2 Rotated SOC cuts for the PSD cone

Here we extend the idea of 𝒦* cuts beyond polyhedral outer approximation; in par-

ticular, we develop outer approximations of the PSD cone 𝒫/S+ based on the rotated

second-order cone 𝒱 . We then show that a single ‘𝒱 cut’ can be interpreted as an

infinite family of linear 𝒦* cuts. The following two lemmas which draw heavily from

Kim et al. [55].

Lemma 14. Let:

𝑇 =

⎡⎣𝜑0 𝜑

𝜑𝑇 Φ

⎤⎦ ∈ S𝑛, 𝑊 =

⎡⎣𝜓0 𝜓

𝜓𝑇 Ψ

⎤⎦ ∈ (︀S𝑛
+

)︀*
. (3.88)

Suppose we can decompose Ψ ∈ S𝑛−1
+ into a sum of 𝐿 rank-one matrices, i.e.,

Ψ =
∑︁
𝑙∈J𝐿K

𝜈 𝑙(𝜈 𝑙)𝑇 . (3.89)

Note that a decomposition of this form can be obtained from an eigenvalue decom-

position. Then 𝑇 ∈ S𝑛
+ implies:

(︂
𝜑0√

2
,
⟨Ψ,Φ⟩√

2
,
⟨︀
𝜑,𝜈1

⟩︀
, . . . ,

⟨︀
𝜑,𝜈𝐿

⟩︀)︂
∈ 𝒱𝐿+2, (3.90)

hence (3.90) defines a valid outer approximation of 𝒫.

Proof. Kim et al. [55] prove a variant of the standard Schur-complement result that

𝑇 ∈ S𝑛
+ iff 𝜑0 ≥ 0,Φ ∈ S𝑛−1

+ , and 𝜑0Φ − 𝜑𝜑𝑇 ∈ S𝑛−1
+ . Given 𝑇 ,𝑊 ∈ S𝑛

+, it must
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hold that
⟨︀
Ψ, 𝜑0Φ− 𝜑𝜑𝑇

⟩︀
≥ 0, i.e.,

𝜑0 ⟨Ψ,Φ⟩ − 𝜑𝑇Ψ𝜑 ≥ 0. (3.91)

Using 𝜑𝑇Ψ𝜑 =
∑︀

𝑙∈[𝐿]
⟨︀
𝜑,𝜈 𝑙

⟩︀2, we obtain

𝜑0 ⟨Ψ,Φ⟩ ≥
∑︁
𝑙∈J𝐿K

⟨︀
𝜑,𝜈 𝑙

⟩︀2
, (3.92)

which is precisely (3.90).

Lemma 15. Fix Ψ ∈ S𝑛−1
+ and obtain a decomposition of the form (3.89). Then (3.90)

holds if and only if ⟨𝑊 ,𝑇 ⟩ ≥ 0 for all 𝜓0 ∈ R,𝜓 ∈ R𝑛−1 such that:

𝑊 =

⎡⎣𝜓0 𝜓

𝜓𝑇 Ψ

⎤⎦ ∈ (︀S𝑛
+

)︀*
. (3.93)

Proof. Theorem 3.3 of [55].

Note that the choice the upper-left diagonal element to decompose the matrices

𝑇 and 𝑊 in Lemma 14 is arbitrary. In particular, a single dual matrix 𝑊 ∈
(︀
S𝑛
+

)︀*
immediately yields 𝑛 𝒱 outer approximation cuts by different choices of diagonal

element.

We can use the 𝒱 cuts for 𝒫 to improve our initial fixed outer approximation for

the PSD cone discussed in Section 3.2.1. Recall that any positive semidefinite matrix

satisfies the condition that every 2 × 2 principal sub-matrix is PSD. Thus 𝑇 ∈ S𝑛
+

implies: ⎡⎣𝑇𝑖,𝑖 𝑇𝑖,𝑗

𝑇𝑗,𝑖 𝑇𝑗,𝑗

⎤⎦ ∈ S2
+, ∀𝑖, 𝑗 ∈ J𝑛K : 𝑖 > 𝑗. (3.94)

Note 𝑇𝑗,𝑖 = 𝑇𝑖,𝑗,∀𝑖, 𝑗 ∈ J𝑛K because symmetry is already enforced (see Sec-

tion 3.1.2). Furthermore when 𝑖 = 𝑗 the condition is trivial because we impose

𝑇𝑖,𝑖 ∈ R+,∀𝑖 ∈ J𝑛K when we add the initial fixed 𝒦* cuts described in Section 3.2.1.
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We use the PSD cone 𝒱 cuts described in (3.90) with a particular set of 𝒫* points

in order to impose the conditions (3.94). In contrast to the initial fixed polyhedral

outer approximation of the 𝒫 cone we proposed in Section 3.2.1, these 𝒱 cuts give an

initial SOCP outer approximation. As we will discuss, the 𝒱 initial fixed cuts in fact

imply the linear initial fixed cuts.

Consider the 𝑛 (rank-1) dual cone points 𝑒(𝑖)𝑒(𝑖)𝑇 ∈
(︀
S𝑛
+

)︀*
,∀𝑖 ∈ J𝑛K. For each

points we add a subset of the 𝑛 possible SOC cuts we could add (one for each diagonal

element as 𝜑0). Specifically, for dual cone point 𝑗, we add the 𝑛−𝑗 SOC cuts choosing

diagonal indices 𝑖 for which 𝑖 > 𝑗 for 𝜑0:(︃
𝑇𝑖,𝑖√

2
,

⟨︀
𝑒(𝑖)𝑒(𝑖)𝑇 ,𝑇

⟩︀
√

2
, ⟨𝑒(𝑖),𝑇:,𝑗⟩

)︃
=

(︂
𝑇𝑖,𝑖√

2
,
𝑇𝑗,𝑗√

2
, 𝑇𝑖,𝑗

)︂
∈ 𝒱3, (3.95)

where 𝑇:,𝑗 denotes the 𝑗th column vector of 𝑇 . Thus we add 𝑛(𝑛−1)
2
𝒱 cuts for a fixed

initial outer approximation of the S𝑛
+ cone. These cuts imply the condition (3.94),

which by the Schur complement is equivalent to:

𝑇𝑖,𝑖𝑇𝑗,𝑗 ≥ 𝑇 2
𝑖,𝑗, ∀𝑖, 𝑗 ∈ J𝑛K : 𝑖 > 𝑗, (3.96)

which is equivalent to:

(︂
𝑇𝑖,𝑖√

2
,
𝑇𝑗,𝑗√

2
, 𝑇𝑖,𝑗

)︂
∈ 𝒱3, ∀𝑖, 𝑗 ∈ J𝑛K : 𝑖 > 𝑗. (3.97)

Ahmadi and Hall [3] discuss LP and SOCP outer approximations of the PSD cone.

The cuts (3.95) correspond to the extreme rays of the dual cone of ‘scaled diagonally

dominant’ matrices. As the authors argue in [3], the cone of scaled diagonally dom-

inant matrices is an important subset of the PSD cone, so its dual cone provides a

potentially useful initial fixed outer approximation of the PSD cone. Both cones are

representable as an intersection of rotated second-order cone constraints. Further-

more, since the cone of diagonally dominant matrices is a strict subset of the cone of

scaled diagonally dominant matrices, the PSD cone outer approximation we get from
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these 𝒱 initial fixed cuts is strictly stronger than the polyhedral outer approximation

we described in Section 3.2.1.

3.5.3 Lifted 𝒦* cuts for SOC cone disaggregation

In Chapter 2 we argue that a major motivation for using conic representations of con-

vex constraints in the context of mixed-integer convex optimization is that conic for-

mulations are already lifted or extended formulations of the original problem. Lifted

formulations are known to accelerate outer-approximation approaches [83, 45].

However, once a problem is encoded in conic form, there may be further opportu-

nities to exploit lifted formulations. For example, the second-order cone ℒ is known to

have multiple lifted formulations in terms of lower-dimensional cones [88, 9]. It may be

computationally advantageous to provide the original formulation to the conic solver

for subproblems, e.g., R(𝑙,𝑢), and use a lifted formulation in the outer-approximation

problems, e.g., P (𝒵1, . . . ,𝒵𝐾 , 𝑙,𝑢). In this section, we exploit this idea principally

for the second-order cone but with an eye towards more general applicability.

Consider a cone 𝒞 which we know is a projection of a product of cones 𝒞1×· · ·×𝒞𝐿
i.e. 𝑦 ∈ 𝒞 if and only if there exists a 𝜋 such that:

𝐹 𝑙𝑦 +𝐺𝑙𝜋 ∈ 𝒞𝑙, ∀𝑙 ∈ J𝐿K , (3.98)

for some 𝐹 1, . . . ,𝐹 𝐿 and 𝐺1, . . . ,𝐺𝐿 fixed.

We can observe that any set of 𝒦* cuts for the product of cones 𝒞1×· · ·×𝒞𝐿 would

project to at least one 𝒦* cut for 𝒞. Let 𝑧𝑙 ∈ 𝒞𝑙 for each 𝑙 ∈ J𝐿K. Then given any set

of multipliers 𝛼 ≥ 0 such that
∑︀

𝑙∈J𝐿K 𝛼𝑙(𝐺
𝑙)𝑇𝑧𝑙∈J𝐿K = 0 (which project out 𝜋 when

aggregating the lifted 𝒦* cuts), the cuts imply
⟨∑︀

𝑙∈J𝐿K 𝛼𝑙(𝐹
𝑙)𝑇𝑧𝑙,𝑦

⟩
≥ 0,∀𝑦 ∈ 𝒞, so∑︀

𝑙∈J𝐿K 𝛼𝑙(𝐹
𝑙)𝑇𝑧𝑙 ∈ 𝒞*.

The strength of lifted cuts of this form is that a small collection of cuts in the

lifted space can project down to a large number of 𝒦* cuts in the original space [88].

For the case of the second-order cone ℒ, Vielma et al. [88] were the first to present
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a lifted formulation as (𝑟, 𝑡) ∈ ℒ𝑛+1 iff ∃𝜋 ∈ R𝑛 such that:

(𝑟, 𝜋𝑖, 𝑡𝑖) ∈ 𝒱 , ∀𝑖 ∈ J𝑛K , (3.99)

𝑟 −
∑︁
𝑖∈J𝑛K

2𝜋𝑖 ∈ R+. (3.100)

Vielma et al. [88] showed that adding inequalities in the extended space (𝑟, 𝜋𝑖, 𝑡𝑖)

yields tighter polyhedral approximations and accelerates outer-approximation meth-

ods for MISOCP.

One may prefer to keep the 𝜋 variables explicitly in the outer approximation

problem, but not in the conic subproblem, because the conic solvers may handle

the original SOC problem more efficiently than they handle the lifted problem. If

the lifting were instead performed as a preprocessing step to M, this would not be

possible, and furthermore some information would be lost, e.g., with initial cuts based

on ℓ1 that we present soon. The discussion below shows how to transform a ℒ* cut

into a lifted cut compatible with the formulation (3.99)-(3.100).

Given a dual point (𝑢,𝑤) ∈ (ℒ𝑛)*, consider the 𝑛 3-dimensional vectors:

(︂
𝑤2

𝑖

2‖𝑤‖22
, 1,

𝑤𝑖

‖𝑤‖2

)︂
∈ 𝒱*, ∀𝑖 ∈ J𝑛K . (3.101)

We show that the lifted 𝒦* cuts on (𝑟, 𝜋𝑖, 𝑡𝑖) from these points imply the original

cut ⟨(𝑢,𝑤), (𝑟, 𝑡)⟩ ∈ R+. Suppose 𝑟,𝜋, 𝑡 satisfy:

𝑤2
𝑖

2‖𝑤‖22
𝑟 + 𝜋𝑖 +

𝑤𝑖

‖𝑤‖2
𝑡𝑖 ≥ 0, ∀𝑖 ∈ J𝑛K , (3.102)

𝑟 −
∑︁
𝑖∈J𝑛K

2𝜋𝑖 ≥ 0. (3.103)
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Aggregating constraints (3.102) over 𝑖 we obtain:

∑︁
𝑖∈J𝑛K

(︂
𝑤2

𝑖

2‖𝑤‖22
𝑟 + 𝜋𝑖 +

𝑤𝑖

‖𝑤‖2
𝑡𝑖

)︂
(3.104)

=
‖𝑤‖22
2‖𝑤‖22

𝑟 +
∑︁
𝑖∈J𝑛K

𝜋𝑖 +
∑︁
𝑖∈J𝑛K

𝑤𝑖𝑡𝑖
‖𝑤‖2

(3.105)

=
𝑟

2
+
∑︁
𝑖∈J𝑛K

𝜋𝑖 +
∑︁
𝑖∈J𝑛K

𝑤𝑖𝑡𝑖
‖𝑤‖2

(3.106)

≥ 0. (3.107)

Using the constraint (3.103) or 𝑟
2
≥
∑︀

𝑖∈J𝑛K 𝜋𝑖:⟨(︂
1,

𝑤

‖𝑤‖

)︂
, (𝑟, 𝑡)

⟩
(3.108)

= 𝑟 +
∑︁
𝑖∈J𝑛K

𝑤𝑖𝑡𝑖
‖𝑤‖2

(3.109)

≥ 𝑟

2
+
∑︁
𝑖∈J𝑛K

𝜋𝑖 +
∑︁
𝑖∈J𝑛K

𝑤𝑖𝑡𝑖
‖𝑤‖2

(3.110)

≥ 0. (3.111)

We see that the𝒦* cuts in lifted space imply the original𝒦* cut
⟨(︁

1, 𝑤
‖𝑤‖

)︁
, (𝑟, 𝑡)

⟩
∈

R+.

We can use the lifting for ℒ to improve our initial fixed outer approximation

discussed in Section 3.2.1. Note that (𝑟, 𝑡) ∈ ℒ𝑛+1 implies ‖𝑡‖1√
𝑛
≤ 𝑟, which could be

used to generate an initial polyhedral outer approximation for ℒ. The epigraph of

the ℓ1 norm cannot be compactly formulated in the space of (𝑟, 𝑡) directly; the most

straightforward approach would be to introduce auxiliary variables modeling |𝑡𝑖| for

each 𝑖. Instead of adding these auxiliary variables, we propose a more economical

method for enforcing the ℓ1 constraint by using the auxiliary variables 𝜋 which we

assume are already present in the model for adding lifted cuts.

Take the two dual points
(︁

1, ±1√
𝑛

)︁
∈ (ℒ𝑛+1)* and turn them into lifted 𝒦* cuts by

following the discussion in the previous section. Note ‖±1√
𝑛
‖2 = 1, so 𝑤𝑖

‖𝑤‖2 = ±1√
𝑛
,∀𝑖 ∈
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J𝑛K. The 2𝑛 lifted 𝒦* cuts are:

⟨(︂
1

2𝑛
, 1,± 1√

𝑛

)︂
, (𝑟, 𝜋𝑖, 𝑡𝑖)

⟩
∈ R+, ∀𝑖 ∈ J𝑛K , (3.112)

that is,

1

2𝑛
𝑟 + 𝜋𝑖 +

±1√
𝑛
𝑡𝑖 ≥ 0, ∀𝑖 ∈ J𝑛K . (3.113)

By construction these define a valid set of lifted 𝒦* cuts because
(︁

1
2𝑛
, 1,± 1√

𝑛

)︁
∈

𝒱*. If we pick a set of signs 𝑠𝑖 ∈ {−1,+1} for 𝑖 ∈ J𝑛K and aggregate the cuts defined

by
(︁

1
2𝑛
, 1, 𝑠𝑖

1√
𝑛

)︁
, we obtain

∑︁
𝑖∈J𝑛K

(︂
1

2𝑛
𝑟 + 𝜋𝑖 +

𝑠𝑖√
𝑛
𝑡𝑖

)︂
(3.114)

=
𝑟

2
+
∑︁
𝑖∈J𝑛K

𝜋𝑖 +
∑︁
𝑖∈J𝑛K

𝑠𝑖𝑡𝑖√
𝑛
, (3.115)

which together with 𝑟
2
≥
∑︀

𝑖∈J𝑛K 𝜋𝑖 we obtain

𝑟 +
∑︁
𝑖∈J𝑛K

𝑠𝑖𝑡𝑖√
𝑛
≥ 0 (3.116)

The 2𝑛 choices of signs 𝑠𝑖 together imply:

𝑟 ≥
∑︁
𝑖∈J𝑛K

|𝑡𝑖|√
𝑛

=
‖𝑡‖1√
𝑛
, (3.117)

which is the ℓ1 condition we wanted to enforce.

3.6 Pajarito solver and related software

In this section we describe our solver, Pajarito, and the surrounding software ar-

chitecture. This section may be of particular interest to authors of mathematical

optimization software or advanced users.
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Figure 3-1: Pajarito fully exploits the MathProgBase abstraction layer to simultane-
ously accept input from many forms and call out to MIP and continuous conic solvers
in a solver-independent way.

3.6.1 JuliaOpt

Pajarito is the first MICP solver written in the Julia language [12], while existing

convex MINLP solvers like 𝛼-ECP, Artelys Knitro, Bonmin, DICOPT, FilMINT,

MINLP_BB, and SBB reviewed by Bonami et al. [15] are written in C, C++, or

Fortran to our knowledge. Julia is a high-level programming language which can

match the performance of these lower-level languages for writing solvers [62] with

much less boilerplate code. Pajarito’s code is compact, and we intend for it to be

reusable and extensible by other researchers. Pajarito is fully integrated with the

JuliaOpt ecosystem, including the powerful MathProgBase abstraction layer.

3.6.2 MathProgBase

The MathProgBase abstraction layer, initially developed as a backend for JuMP [30],

is a standardized API in Julia for interacting with solvers which currently includes

specifications for Linear/Quadratic solvers (e.g., from linear optimization to mixed-
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integer quadratic optimization), Conic solvers (both continuous and mixed-intger),

and derivative-based Nonlinear solvers. The breadth of problem classes covered by

MathProgBase distinguishes it from similar abstraction layers like OSI [79], a COIN-

OR library in C++. Pajarito interacts with the MathProgBase interface in two

ways. First, it implements the Conic solver interface so that it may act as a mixed-

integer conic solver and take input from the JuMP [30] and Convex.jl [85] modeling

interfaces and other external interfaces which will be discussed later. Second, Pajarito

uses JuMP directly to solve the mixed-integer relaxation, and for the branch-and-cut

algorithm Pajarito uses JuMP’s solver-independent callback functionality. Under the

hood, JuMP interacts with these solvers via the Linear/Quadratic interface, which

allows us to easily exchange the MILP solver. To interact with conic solvers, Pajarito

directly manipulates the conic matrix data and uses the Conic solver interface. See

Figure 3-1 for an illustration.

Beyond the choice of programming language and abstractions, the most significant

architectural difference between Pajarito and existing MICP solvers is that Pajarito

takes the conic-form problem M as input while previously developed solvers interact

with the instance almost exclusively through oracles to query values and derivatives

of the constraints and objective function.2 Unlike derivative-based input, conic-form

input can be described compactly with the matrices 𝐴𝑘, the vectors 𝑐 and 𝑏𝑘, and a

small data structure describing the cones 𝒞𝑘 (assuming these are taken from a small

number of known cones). This compact representation makes the interface to the

solver particularly straightforward; it is analogous in complexity to that of LP and

MILP solvers.

We have developed a proof-of-concept C API (cmpb) which enables access to Math-

ProgBase Conic solvers by embedding Julia as a shared library. In collaboration with

Steven Diamond and Baris Ungun, we were able to demonstrate accessing Pajarito

from CVXPY [26], a Python-based disciplined convex modeling package, through the

cmpb interface. At this time we would recommend this interface for expert users only

2As part of our preliminary work [63], we developed a derivative-based algorithm which is included
in the release of Pajarito.
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because it has not been well tested. In Pajarito’s README file we provide more

guidance on the recommended ways of using the solver.

The use of MathProgBase does come with a couple of drawbacks that we would

like to highlight. First, MathProgBase does not attempt to provide an abstraction

for solver parameters like convergence tolerances. In cases where we need certain

tolerances on the subproblem solvers in order for Pajarito to converge to a requested

tolerance, it is the user’s responsibility to set the correct tolerances on the subproblem

solver. For example, we ask users to manually adjust the MILP solver’s linear feasi-

bility tolerance and integer feasibility tolerance for improved convergence behavior.

These cases are documented in Pajarito’s README file.

The second drawback is that the abstraction for solver callbacks in MathProgBase

was designed primarily around shared behavior between CPLEX and Gurobi. For

example, MathProgBase defines a lazy constraint callback where we can add cuts to

exclude a given incumbent. The MILP solver, however, may choose to ignore these

cuts for numerical reasons and accept the incumbent anyway. Solvers like CPLEX

and SCIP provide facilities to force rejection of an incumbent, but these are not

currently accessible through the abstraction layer. Additionally, through the lazy

callback we do not have the ability to provide new incumbents to the solver. A

heuristic callback is available for this purpose, but no guarantees are available as to

when we have an opportunity to provide a new solution. For nominal correctness

of Algorithm 3, we must be able to update the incumbent (Line 20) before the next

node is processed. Lacking this functionality, we cannot claim correctness of an

implementation of Algorithm 3 based on the available callbacks in MathProgBase.

In practice, however, we have not observed issues attributable to not being able to

provide a new incumbent at the right time. We have observed issues related to not

being able to force rejection of an incumbent.

3.6.3 Pajarito

Pajarito implements a number of algorithmic variants of the methods described in

this section. At the highest level, users may choose between running an iterative OA
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algorithm (as described in Chapter 2) and an LP-based branch-and-bound algorithm

similar to Algorithms 3 and 4. The branch-and-bound algorithm is implemented using

MathProgBase callbacks and is subject to the limitations described in Section 3.6.2.

We call the branch-and-bound algorithm MIP-solver-driven (MSD) because the MILP

solver is responsible for managing convergence and stopping criteria. We use a lazy

constraint callback that is invoked whenever the MILP solver finds an integer-feasible

solution. Based on this solution, we add corresponding cuts, which may be sub-

problem cuts as in Section 3.2.3 and/or separation cuts as in Section 3.2.4 according

to the options set by the user. If we solve a conic subproblem and find a feasible

solution, we provide this solution to the solver through the heuristic callback. By

default, we implement the cut scaling described in Section 3.4 which may be dis-

abled by a user option. We have options to enable or disable all of the extensions

described in Section 3.5. The LP-based branch-and-bound method has been tested

with CPLEX and Gurobi but in principle could work with any solver that implements

the MathProgBase callback abstraction.

3.6.4 CBLIB and ConicBenchmarkUtilities

We use the CBF format proposed by H. Friberg [34] to encode benchmark problems.

The CBF format was originally designed to support the second-order cone and the

PSD cone. We collaborated with H. Friberg to extend the format to support exponen-

tial cones, now available as CBF version 2. We developed ConicBenchmarkUtilties.jl,

a Julia interface to the CBF format which includes utilities to translate between Math-

ProgBase Conic format and CBF format.

CBLIB is a benchmark library with problems in CBF format also developed and

maintained by H. Friberg. We contributed a number of new problem instances to

CBLIB. In Chapter 2, we described translating instances from the MINLPLIB2 library

into Convex.jl format. For this experiments in this chapter, we took a representative

subset of these instances3 and translated them to CBF format and contributed them to

CBLIB. Per family, the instances with corresponding counts are gams01 (1), rsyn (48),
3Available at https://github.com/mlubin/MICPExperiments.
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syn (48), tls (6), and clay (12), for a total of total 115 instances, including the first

exponential cone instances in CBLIB. For some of these instances, we cleaned them

of tiny values artificially introduced for derivative-based solvers [41]. For example,

the instance rsyn0805h has a constraint:

(︂
𝑥289

10−6 + 𝑏306
− 1.2 * log

(︂
1 +

𝑥285
10−6 + 𝑏306

)︂)︂
* (10−6 + 𝑏306) ≤ 0 (3.118)

which we re-encode as

𝑥289 − 1.2̂︁log (𝑏306 + 𝑥285, 𝑏306) ≤ 0, (3.119)

where ̂︁log(𝑥, 𝑦) = 𝑦 log(𝑥/𝑦) is the perspective function of log which has a natural

representation using ℰ .

3.7 Computational experiments

We present here computational experiments investigating the algorithmic develop-

ments within the cuts framework and then proceed to compare the performance of

Pajarito with alternative open-source and commercial solvers for MISOCP.

3.7.1 Methods and presentation of results

The set of instances we use in our computational testing and benchmarks are a selec-

tion of 120 MISOCP instances from the CBLIB [34] library. Instances were chosen as

representatives of each family of instances in the library, cutting out problems that

were either too small to be useful in measuring relative performance or too large for

any solver to solve within our one-hour time limit.

In order to be able to run a large number experiments quickly, we chose to use

the Amazon EC2 cloud computing platform. We use m4.xlarge EC2 computing

instances with 16GB RAM for all runs. All MIP and conic solvers are run in single-

threaded mode. We note that timing results on EC2 may be subject to random
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variability across runs because the computing nodes are virtual machines. We have

not yet attempted to quantify this variability.

In addition to the callback-based MIP-solver-driven (MSD) algorithm discussed in

this paper, we also compare in some cases with the iterative OA algorithm proposed

in Chapter 2. The iterative algorithm is simpler to implement but the MSD algorithm

should be expected to perform relatively better.

The MIP solvers we experiment with are Cbc 2.9.8, GLPK 4.61, and CPLEX

12.7.0. Cbc and GLPK are open source, and CPLEX is commercial. We have only

implemented the callback-based algorithm for CPLEX; we use Cbc and GLPK within

the iterative algorithm only. For continuous second-order cone solvers we use the

commercial MOSEK solver version 8 and the open-source ECOS solver [28] version

2.0.5. When paired with an open-source MIP solver and an open-source SOCP solver,

Pajarito can be considered a purely open-source MISOCP solver.

In conducting our computational tests, we encountered a surprising number of

cases where a solver reported an incorrect answer. We used a filter to search for

constraint violations above 10−3 and objective value disagreements by more than

0.01% and manually excluded inconsistent instances. Most of these cases we were

able to verify that the MIP solver was responsible for giving a ‘wrong’ answer.

In the discussions that follow, we compare different methods and solvers by count-

ing termination status. The ‘conv’ status indicates that an instance was claimed to

be solved to global optimality within tolerances and we do not have evidence indi-

cating otherwise. The ‘wrong’ status indicates that the instance was claimed to be

solved to global optimality within tolerances, but we manually excluded the result

according to the criteria discussed above. The ‘not conv’ status indicates that the

solver stopped because it could not proceed, e.g., because no numerically violated

cuts could be added. The ‘limit’ status indicates that the solver stopped because it

hit the time limit or ran out of memory.

As a performance summary, we compute the shifted geometric mean defined as

(
∏︀

𝑖∈J𝑛K(𝑡𝑖 + 𝑠))
1
𝑛 − 𝑠 for values 𝑡1, . . . , 𝑡𝑛 and shift 𝑠 [2]. The shift is designed to

decrease the relative influence of “easy” instances. For execution times we shift use
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a shift of 10 seconds. For iteration counts we shift by 1 iteration. Geometric means

are computed over the set of instances with ‘conv’ status, which biases the measure

against solvers that solve more hard instances.

In addition to the summary statistics, we use performance profiles [27, 37] to

compare relative performance by instance. They should be interpreted as follows:

For a fixed factor 𝐹 , the level of each solver on the 𝑃 axis represents the proportion

of instances solved within a factor of 𝐹 of the fastest solution time. Therefore, higher

is better. At 𝐹 = 1, the proportion represents exactly the instances on which the

solver was the fastest. As 𝐹 increases, we can observe if the solver reliably solves

problems nearly as fast as the best recorded time. To decrease the influence of very

easy instances which solver in a few seconds, we add 10 seconds to all solution times

before computing the performance profiles.

The scripts and data used to run our experiments are available at github.com/

mlubin/PajaritoSupplement.

3.7.2 Testing Pajarito

In this section, we present computational experiments addressing two key questions

regarding 𝒦* cuts. First, we ask whether subproblem cuts are sufficient in practice

to prove global optimality and evaluate the effect of our proposed numerical scaling

of 𝒦* subproblem cuts. Second, we compare the performance of the separation and

subproblem cuts. Separation cuts are already implemented in commercial MISOCP

solvers, while subproblem cuts are not. For these algorithmic questions, we fix the

MILP solver as CPLEX and use Mosek for the conic subproblems.

How does subproblem cut scaling affect convergence?

In principle, one should be able to prove global optimality using only the subproblem

cuts. However, our model does not account for all possible sources of numerical im-

precision in a practical implementation. Here, we investigate if the subproblem cuts

are indeed sufficient. These experiments are motivated by our initial computational
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options termination status counts statistics (conv only)

presolve scale conv wrong not conv limit time(s) iterations

X X 95 1 3 21 39.59 4.07
X 87 2 9 22 43.85 4.27

X 92 0 0 28 34.70 4.08
92 0 1 27 37.98 4.08

Table 3.1: Termination statuses and shifted geometric mean of solve time and itera-
tion count on the MISOCP library, for the iterative subproblem cuts algorithm with
and without MIP presolve and subproblem cuts scaling

experiences where we saw a number of convergence failures on the iterative algo-

rithm proposed in Chapter 2. Hence, we compare here only on the simpler iterative

algorithm.

In the first two rows of Table 3.1, we illustrate the effect of the cut scaling option.

With cut scaling disabled, Pajarito returns 2 incorrect answers and is unable to

converge on 9 instances. With cut scaling enabled, the convergence behavior improves

improves substantially to 1 incorrect answer and failure to converge on 3 instances.

Also, the shifted geometric mean time and number of iterations decrease. In Figure 3-

2 we show performance profiles comparing solution time and iteration count with and

without cut scaling.

The incorrect answers on termination can be attributed to the MILP solver. In

order to verify this statement, we experimented with disabling CPLEX’s ‘presolve’

functionality which is responsible for performing a number of simplifying transfor-

mations on the MILP before solving it. Solutions in the transformed space may not

satisfy the tolerances which the users specifies for the original problem. In the last

two rows of Table 3.1, we show the results of running with presolve disabled, both

with and without cut scaling. Disabling presolve, although it results in decreased

performance, eliminates all instances of incorrect answers and leaves only 1 instance

of nonconvergence when scaling is disabled.

We conclude from these experiments that cut scaling is important and effective in

improving convergence, and that remaining failures to converge, on these instances,

can be attributed to numerical inaccuracies of the MILP solver.
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Figure 3-2: Performance profiles for solve time and iterations on the MISOCP library,
for the iterative subproblem cuts algorithm (MIP presolve enabled) with and without
subproblem cuts scaling

Do subproblem cuts perform better than separation cuts?

While a convex MINLP analogue of the subproblem cuts algorithm has been imple-

mented, e.g., in BONMIN, our implementation is the first such one for mixed-integer

conic optimization using conic solvers. Here, we compare with the more common

separation-based cuts which are already implemented in MISOCP solvers like Gurobi,

CPLEX, and SCIP. Recall, we refer to the callback-based branch-and-bound algo-

rithm as MSD. Our MSD algorithm with separation cuts is analogous to, but less

efficient than, the methods implemented these standalone solvers.

In Table 3.2 and Figure 3-3 we compare our implementation of separation and

subproblem cuts under the iterative and MSD algorithms. The MSD algorithm with

subproblem cuts solves more instances and is faster than the MSD algorithm with

separation cuts. Subproblem cuts also perform better than separation cuts for the

iterative algorithm, which is relatively slower than MSD as we had expected.

3.7.3 Comparing MICP solvers

Having investigated some important algorithmic questions, we now make comparisons

with other existing solvers.
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options termination status counts statistics (conv only)

alg cuts conv wrong not conv limit time(s) iterations

iter sep 96 1 0 23 55.23 6.76
iter subp 95 1 3 21 39.59 4.07

MSD sep 95 1 0 24 20.86 –
MSD subp 100 0 1 19 17.56 –

Table 3.2: Termination statuses and shifted geometric mean of solve time and it-
eration count on the MISOCP library, for the iterative and MSD versions of the
separation cuts and subproblem cuts algorithms
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Figure 3-3: Performance profile for solution time on the MISOCP library, for the
iterative and MSD versions of the separation cuts and subproblem cuts algorithms
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termination status counts

solver conv wrong not conv limit time(s)

BONMIN-BB 37 27 10 46 82.95
BONMIN-OA 30 8 29 53 72.12
BONMIN-OA-D 35 8 29 48 64.25
Paj-CBC-ECOS 81 8 0 31 51.48
Paj-GLPK-ECOS 68 0 2 50 42.75

Table 3.3: Termination statuses and shifted geometric mean of solve time on the MIS-
OCP library, for BONMIN and default iterative Pajarito solvers using CBC/GLPK
and ECOS

Open-source comparison with BONMIN

We are unaware of any mainstream open-source solvers designed for solving MISOCP

problems. Instead, we compare with BONMIN, a convex MINLP solver. The NLP

representation is not well suited for MISOCPs since the the functional representation

of ℒ cone has points of nondifferentiability, but nevertheless BONMIN is the closest

competitor to our knowledge. We note that ECOS includes a very naive branch-and-

bound implementation for MISOCP; however in our preliminary testing it was not

competitive enough to merit a full comparison.

We compare three different approaches using BONMIN. BONMIN-BB uses BON-

MIN’s continuous branch-and-bound algorithm, BONMIN-OA uses BONMIN’s outer

approximation algorithm, and BONMIN-OA-D uses BONMIN’s outer approximation

algorithm to which we manually provide the disaggregated form of the ℒ cone. These

algorithms are described in more detail at [14].

In Pajarito, we use ECOS as our open-source conic solver and experiment with

both Cbc and GLPK as MILP solvers. Table 3.3 summarizes the results on the

benchmark library and Figure 3-4 illustrates the relative performance across instances

with a performance profile plot. BONMIN fails a large number of times and solves

significantly fewer instances than Pajarito. Cbc generally performs faster than GLPK

but is less reliable (on two instances, Cbc returned solutions that violated integrality

restrictions).
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Figure 3-4: Performance profile for solution time on the MISOCP library, for BON-
MIN (best of 3 algorithms) and open-source default iterative Pajarito-based solvers

termination status counts

solver conv wrong not conv limit time(s)

SCIP 78 1 0 41 43.36
CPLEX 96 3 5 16 14.30
Paj-iter-CPLEX-MOSEK 96 1 0 23 38.70
Paj-MSD-CPLEX-MOSEK 101 0 0 19 18.12

Table 3.4: Termination statuses and shifted geometric mean of solve time on the MIS-
OCP library, for SCIP and CPLEX MISOCP solvers and default MSD and iterative
Pajarito-based solvers using CPLEX and MOSEK

Comparisons with CPLEX and SCIP

Here we compare our iterative and MSD algorithms using CPLEX as a MILP solver

and Mosek as a conic solver with SCIP and CPLEX as MISOCP solvers. We note

that SCIP, although an academic solver, is not available under an open source license.

Table 3.4 summarizes the results on the benchmark library and Figure 3-5 il-

lustrates the relative performance across instances with a performance profile plot.

CPLEX’s MISOCP solver is generally the fastest, although Pajarito’s MSD algorithm

solves more instances in the time limit and performs competitively on instances which

are solved by both CPLEX and Pajarito.
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Figure 3-5: Performance profile for solution time on the MISOCP library, for CPLEX
MISOCP solver and default MSD Pajarito solver using CPLEX and MOSEK

3.8 Future work

In near future we intend to test Pajarito on a broader collection of problems which in-

clude exponential cone and PSD cone constraints. We note that Pajarito has already

been independently benchmarked on a suite of MISDP problems by Tristan Gally, re-

ported at the recent SIAM Conference on Optimization in Vancouver. In these tests,

the MSD algorithm of Pajarito with subproblem cuts performed competitively with

two algorithms implemented in SCIP-SDP, a continuous branch-and-bound algorithm

and an LP-based branch-and-bound algorithm using separation cuts. On one family

of instances, Pajarito solved the most instances out of all solvers tested. On another

family, Pajarito performed poorly because the MILP solver rarely found feasible so-

lutions and hence subproblem cuts were rarely added. It is clear that subproblem

cuts will be useful in general-purpose mixed-integer conic solvers, but there remains

more work to do on deciding when and how frequently to add cuts, questions which

we have not considered here.

An interesting direction of future work would be to experiment with first-order

solvers like SCS [74] which would return less accurate solutions but may be able to

efficiently warm-start when solving the sequences of subproblems that arise within

LP-based branch-and-bound. Our analysis of the algorithm has assumed so far that

the solution from the conic solver is exact, which seems to be sufficient for solvers
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like Mosek and ECOS which are based on interior-point methods. In order to achieve

finite-time convergence of our method when using first order solvers, it may be neces-

sary to consider error bounds on the conic solver, e.g., by using Renegar’s condition

measure [77, 23, 33].
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Chapter 4

Mixed-integer convex representability

4.1 Preliminaries

By N we will refer to the nonnegative integers {0, 1, 2, . . .}. We will often work with

projections of a set 𝑀 ⊆ R𝑛+𝑝+𝑑 for some 𝑛, 𝑝, 𝑑 ∈ N. We identify the variables in

R𝑛, R𝑝 and R𝑑 of this set as 𝑥, 𝑦 and 𝑧 and we let

proj𝑥 (𝑀) =
{︀
𝑥 ∈ R𝑛 : ∃ (𝑦, 𝑧) ∈ R𝑝+𝑑 s.t. (𝑥,𝑦, 𝑧) ∈𝑀

}︀
.

We similarly define proj𝑦 (𝑀) and proj𝑧 (𝑀).

Definition 5. Let 𝑀 ⊆ R𝑛+𝑝+𝑑 be a closed, convex set and 𝑆 ⊆ R𝑛. We say 𝑀

induces an MICP formulation of 𝑆 if and only if

𝑆 = proj𝑥
(︀
𝑀 ∩

(︀
R𝑛+𝑝 × Z𝑑

)︀)︀
. (4.1)

A set 𝑆 ⊆ R𝑛 is MICP representable if and only if there exists an MICP

formulation of 𝑆. If such formulation exists for a closed polyhedron 𝑀 then we say

𝑆 is (additionally) MILP representable.

Definition 6. For a set of integral vectors 𝑧1, 𝑧2, . . . ,𝑧𝑘 ∈ Z𝑑 we define the integral

cone intcone(𝑧1, 𝑧2, . . . ,𝑧𝑘) = {
∑︀𝑘

𝑖=1 𝜆𝑖𝑧
𝑖 : 𝜆𝑖 ∈ N, 𝑖 ∈ J𝑘K}.
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4.2 Bounded and other restricted MICP representabil-

ity results

Definition 7. A set 𝑆 is bounded MICP (MILP) representable if there exists an

MICP (MILP) formulation which satisfies
⃒⃒
proj𝑧

(︀
𝑀 ∩

(︀
R𝑛+𝑝 × Z𝑑

)︀)︀⃒⃒
<∞. That is,

there are only finitely many feasible assignments of the integer variables 𝑧.

It is easy to see that bounded MICP formulations can represent at most a finite

union of projections of closed, convex sets. To date, however, there are no precise

necessary conditions over these sets for the existence of a bounded MICP formulation.

For instance, Ceria and Soares [19] provide an MICP formulation for the finite union

of closed, convex sets under the condition that the sets have the same recession cone

(set of unbounded directions). In the following lemma we close this gap and give a

simple, explicit formulation for any finite union of projections of closed, convex sets

without assumptions on recession directions.

Lemma 16. 𝑆 ⊆ R𝑛 is bounded MICP representable if and only if there exist

nonempty, closed, convex sets 𝑇1, 𝑇2, . . . , 𝑇𝑘 ⊂ R𝑛+𝑝 for some 𝑝, 𝑘 ∈ N such that

𝑆 =
⋃︀

𝑖∈J𝑘K proj𝑥 𝑇𝑖. In particular 𝑥 ∈ 𝑆 iff there exist 𝑥𝑖 ∈ R𝑛,𝑦𝑖 ∈ R𝑝 for 𝑖 ∈ J𝑘K

and 𝑡 ∈ R𝑘, 𝑧 ∈ Z𝑘 such that

𝑥 =
∑︁
𝑖∈J𝑘K

𝑥𝑖, (𝑥𝑖,𝑦𝑖, 𝑧𝑖) ∈ 𝑇𝑖 ∀𝑖 ∈ J𝑘K ,
∑︁
𝑖∈J𝑘K

𝑧𝑖 = 1, 0 ≤ 𝑧 ≤ 1, (4.2a)

||𝑥𝑖||22 ≤ 𝑧𝑖𝑡𝑖, ∀𝑖 ∈ J𝑘K , 𝑡 ≥ 0 (4.2b)

where 𝑇𝑖 is the closed conic hull of 𝑇𝑖, i.e., cl({(𝑥,𝑦, 𝑧) : (𝑥,𝑦)/𝑧 ∈ 𝑇𝑖, 𝑧 > 0}). This

defines a bounded MICP representation of 𝑆.

Proof. Note that the constraints define a convex set because the conic hull of a convex

set is convex, and ||𝑥𝑖||22 ≤ 𝑧𝑖𝑡𝑖 is a form of the rotated second-order cone, which is

also convex. Any feasible assignment of the integer vector 𝑧 has at most one nonzero

component. Without loss of generality we may take this to be the first component,

so 𝑧1 = 1. Since 𝑡𝑖 is unrestricted in the positive direction, the constraint ||𝑥1||22 ≤ 𝑡𝑖
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Figure 4-1: On the left, two convex sets {(𝑥, 𝑦) : (𝑥 + 0.75)2 + 𝑒𝑦
2 ≤ 2} and {(𝑥, 𝑦) :

(𝑥 − 1.75)2 + 𝑦2 ≤ 1}, resp. By using a set of mixed-integer convex constraints, one
can represent the nonconvex constraint that (𝑥, 𝑦) belongs to the union of the two
sets. When the integer restrictions in this formulation are relaxed, one obtains the
convex hull of the two sets, shaded in green on the right.

imposes no restrictions on the vector 𝑥1 and 𝑥1 ∈ proj𝑥 𝑇1 iff there exists 𝑦1 ∈ R𝑝

such that (𝑥1,𝑦1, 1) ∈ 𝑇1. For 𝑖 > 1, the constraint ||𝑥𝑖||22 ≤ 0 implies 𝑥𝑖 = 0, and

this is feasible because (0,0, 0) ∈ 𝑇𝑖 given 𝑇𝑖 is nonempty by assumption.

A desirable property of MILP formulations is local idealness, when every extreme

point of the convex set defined by relaxing the integrality constraints in fact satisfies

that all integer variables take integer values [86]. (Hence, optimizing a linear function

over the relaxation would yield an optimal solution which satisfies integrality.) Local

idealness implies that the convex relaxation corresponds precisely to the convex hull of

the union; see Figure 4-1 for an illustration. The formulation by Ceria and Soares for

unions of convex sets with a common recession cone is locally ideal, and the following

lemma shows that our formulation is as well. We would advise readers to consider [46]

and Section 2.5.1 before applying this formulation in practice.

Lemma 17. The formulation in Lemma 16 is locally ideal. We will show that any

nonintegral feasible point is a convex combination of integral points.

Proof. For simplicity of exposition suppose 𝑘 = 2. Suppose we have a feasible, non-

integral point 𝛽 = (𝑥,𝑥1,𝑦1, 𝑧1, 𝑡1,𝑥
2,𝑦2, 𝑧2, 𝑡2), so 0 < 𝑧1, 𝑧2 < 1 and 𝑧1 + 𝑧2 = 1.

Define

𝛽1 = (𝑥1/𝑧1,𝑥
1/𝑧1,𝑦

1/𝑧1, 1, 𝑡1/𝑧1,0,0, 0, 0) (4.3)
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and

𝛽2 = (𝑥2/𝑧2,0,0, 0, 0,𝑥
2/𝑧2,𝑦

2/𝑧2, 1, 𝑡2/𝑧2). (4.4)

Then by construction 𝛽 = 𝑧1𝛽
1 +𝑧2𝛽

2. One may verify as well that 𝛽1 and 𝛽2 satisfy

conditions (4.2).

Known MICP representability results for unbounded integers are more limited.

For the case in which 𝑀 is a rational polyhedron Jerowslow and Lowe [49] showed

that a set 𝑆 ⊆ R𝑛 is rational MILP representable if and only if there exist integer

vectors 𝑟1, 𝑟2, . . . , 𝑟𝑡 ⊆ Z𝑛 and rational polytopes 𝑆1, 𝑆2, . . . , 𝑆𝑘 such that

𝑆 =
⋃︁
𝑖∈J𝑘K

𝑆𝑖 + intcone(𝑟1, 𝑟2, . . . , 𝑟𝑡). (4.5)

Characterization (4.5) does not hold in general for non-polyhedral 𝑀 . However, using

results from [25] it is possible to show that it holds for some pure integer cases as

well.

Example 1. Theorem 6 in [25] can be used to show that for any 𝛼 > 0, 𝑃𝛼 :=

{𝑥 ∈ Z2 : 𝑥1𝑥2 ≥ 𝛼} satisfies a representation of the form (4.5) with each polyhedron

𝑆𝑖 containing a single integer vector for each 𝑖 ∈ J𝑘K.

The only mixed-integer and non-polyhedral result we are aware of is a character-

ization of the form (4.5) when 𝑀 is the intersection of a rational polyhedron with

an ellipsoidal cylinder having a rational recession cone [24]. An identical proof also

holds when the recession cone of 𝑀 is a rational subspace and 𝑀 is contained in a

rational polyhedron with the same recession cone as 𝑀 . We can further extend this

result to the following simple proposition.

Proposition 1. If 𝑀 induces an MICP-formulation of 𝑆 and 𝑀 = 𝐶 +𝐾 where 𝐶

is a compact convex set and 𝐾 is a rational polyhedral cone, then for some 𝑘, 𝑡 ∈ N

there exist compact convex sets 𝑆1, 𝑆2, . . . , 𝑆𝑘 and integer vectors 𝑟1, 𝑟2, . . . , 𝑟𝑡 ⊆ Z𝑛

such that

𝑆 =
⋃︁
𝑖∈J𝑘K

𝑆𝑖 + intcone(𝑟1, 𝑟2, . . . , 𝑟𝑡). (4.6)
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Proof. This argument is an extension of Theorem 11.6 of [86]. Suppose 𝑀 = 𝐶 +𝐾

where 𝐶 is a compact convex set and𝐾 is a polyhedral cone generated by rational rays

(𝑟1𝑥, 𝑟
1
𝑦, 𝑟

1
𝑧), (𝑟2𝑥, 𝑟

2
𝑦, 𝑟

2
𝑧), . . . , (𝑟𝑡𝑥, 𝑟

𝑡
𝑦, 𝑟

𝑡
𝑧). (We may assume without loss of generality

that these rays furthermore have integer components). We will prove that there exist

sets 𝑆1, . . . , 𝑆𝑘 such that

𝑆 = proj𝑥
(︀
𝑀 ∩

(︀
R𝑛+𝑝 × Z𝑑

)︀)︀
=
⋃︁
𝑖∈J𝑘K

𝑆𝑖 + intcone(𝑟1𝑥, 𝑟
2
𝑥, . . . , 𝑟

𝑡
𝑥), (4.7)

where each 𝑆𝑖 is a projection of a closed convex set.

For any (𝑥*,𝑦*, 𝑧*) ∈ 𝑀 there exist a finite (via Carathéodory) set of extreme

points (𝑥1,𝑦1, 𝑧1), (𝑥2,𝑦2, 𝑧2), . . . , (𝑥𝑤,𝑦𝑤, 𝑧𝑤) of 𝐶 and nonnegative multipliers 𝜆,

𝛾 with
∑︀

𝑖∈J𝑤K 𝜆𝑖 = 1 such that

(𝑥*,𝑦*, 𝑧*) =
∑︁
𝑖∈J𝑤K

𝜆𝑖(𝑥
𝑖,𝑦𝑖, 𝑧𝑖) +

∑︁
𝑗∈J𝑡K

𝛾𝑗(𝑟
𝑗
𝑥, 𝑟

𝑗
𝑦, 𝑟

𝑗
𝑧). (4.8)

Define

(𝑥̂,𝑦, 𝑧) =
∑︁
𝑖∈J𝑤K

𝜆𝑖(𝑥
𝑖,𝑦𝑖, 𝑧𝑖) +

∑︁
𝑗∈J𝑡K

(𝛾𝑗 − ⌊𝛾𝑗⌋)(𝑟𝑗𝑥, 𝑟𝑗𝑦, 𝑟𝑗𝑧) (4.9)

and

(𝑥∞,𝑦∞, 𝑧∞) =
∑︁
𝑗∈J𝑡K

⌊𝛾𝑗⌋(𝑟𝑗𝑥, 𝑟𝑗𝑦, 𝑟𝑗𝑧) (4.10)

so that (𝑥*,𝑦*, 𝑧*) = (𝑥̂,𝑦, 𝑧) + (𝑥∞,𝑦∞, 𝑧∞).

Note that (𝑥∞,𝑦∞, 𝑧∞) ∈ intcone((𝑟1𝑥, 𝑟
1
𝑦, 𝑟

1
𝑧), . . . , (𝑟𝑡𝑥, 𝑟

𝑡
𝑦, 𝑟

𝑡
𝑧)) =: 𝑀∞ and 𝑧 =

𝑧* − 𝑧∞ ∈ Z𝑑, so (𝑥̂,𝑦, 𝑧) belongs to a bounded set

𝑀̂ = (𝐶 +𝐵) ∩ (R𝑛+𝑝 × Z𝑑), (4.11)

where 𝐵 = {
∑︀

𝑗∈J𝑡K 𝛾𝑗(𝑟
𝑗
𝑥, 𝑟

𝑗
𝑦, 𝑟

𝑗
𝑧) : 0 ≤ 𝛾 ≤ 1}. Since this decomposition holds for

any points (𝑥*,𝑦*, 𝑧*) ∈ 𝑀 , it follows that 𝑀 ⊆ 𝑀̂ + 𝑀∞. Since 𝑀̂ is bounded,

𝑀̂ is a finite union of bounded convex sets. Also 𝑀̂ + 𝑀∞ ⊆ 𝑀 is easy to show, so

we’ve demonstrated 𝑀 = 𝑀̂ + 𝑀∞. The statement (4.7) follows from projection of
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· · ·

· · ·

Figure 4-2: The mixed-integer hyperbola and the collection of balls with increasing
and concave radius are mixed-integer convex representable but do not satisfy the
conditions of Proposition 1.

𝑀 onto the 𝑥 variables.

Unfortunately, MICP-representable sets in general may not have a representation

of the form (4.6), even when 𝑆𝑖 is allowed to be any convex set (not necessarily

bounded). We illustrate this with a simple variation on the pure-integer example

above.

Example 2. Let 𝑆 := {𝑥 ∈ N× R : 𝑥1𝑥2 ≥ 1} be the set depicted in Figure 4-2.

For each 𝑧 ∈ N, 𝑧 ̸= 0 let 𝐴𝑧 := {𝑥 ∈ R2 : 𝑥1 = 𝑧, 𝑥2 ≥ 1/𝑧} so that 𝑆 =
⋃︀∞

𝑧=1𝐴𝑧.

Suppose for contradiction that 𝑆 satisfies (4.5) for convex sets 𝑆𝑖. By convexity of

𝑆𝑖 and finiteness of 𝑘 there exists 𝑧0 ∈ Z such that
⋃︀

𝑖∈J𝑘K 𝑆𝑖 ⊂
⋃︀

𝑧∈J𝑧0−1K𝐴𝑧. Because

min𝑥∈𝐴𝑧0
𝑥2 < min𝑥∈𝐴𝑧 𝑥2 for all 𝑧 ∈ J𝑧0 − 1K we have that there exists 𝑗 ∈ J𝑡K such

that the second component of 𝑟𝑗 is strictly negative. However, this implies that there

exists 𝑥 ∈ 𝑆 such that 𝑥2 < 0 which is a contradiction with the definition of 𝑆.

4.3 Rational MICP

In this section, we address the case of infinitely many possible integer assignments

by considering a restricted subset of these formulations which we call rational MICP.

Rational MICP provides the additional useful structure that the set of feasible in-

teger points has an integral recession direction. This definition includes as a subset

formulations defined by rational polyhedra, i.e., rational MILP formulations.
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4.3.1 Preliminaries

Definition 8. Given an MICP formulation induced by 𝑀 , we say 𝐴𝑧 = proj𝑥(𝑀 ∩

(R𝑛+𝑝 × {𝑧})) is a 𝑧-projected set of the formulation when 𝐴𝑧 ̸= ∅.

Definition 9. We say that an unbounded convex set 𝐶 ⊆ R𝑑 is rationally un-

bounded if the image 𝐶 ′ of any rational affine mapping of 𝐶, is either bounded or

there exists 𝑟 ∈ Z𝑑 ∖ {0} such that 𝑥+ 𝜆𝑟 ∈ 𝐶 ′ from any 𝑥 ∈ 𝐶 ′ and 𝜆 ≥ 0. (i.e., 𝑟

is a recession direction.)

Definition 10. We say that a set 𝑆 is rational MICP representable if it has

a MICP representation induced by the set 𝑀 and the convex set proj𝑧(𝑀) is either

bounded or rationally unbounded.

We now establish a number of properties of rational MICP that we use in our

main results.

Lemma 18. If 𝐶1 ⊆ R𝑛1 and 𝐶2 ⊆ R𝑛2 are bounded or rationally unbounded sets,

then 𝐶1 × 𝐶2 is bounded or rationally unbounded.

Proof. Follows from the definition.

Lemma 19. Let 𝑆1, 𝑆2 ⊆ R𝑛 be nonempty rational MICP representable sets. Then

their union 𝑆 = 𝑆1 ∪ 𝑆2 is rational MICP representable.

Proof. For some 𝑝1, 𝑝2, 𝑑1, 𝑑2 ∈ N and closed convex sets 𝑀1 and 𝑀2 we have 𝑥 ∈ 𝑆1

iff ∃𝑦1 ∈ R𝑝1 , 𝑧1 ∈ Z𝑑1 such that (𝑥,𝑦1, 𝑧1) ∈ 𝑀1 and 𝑥 ∈ 𝑆2 iff ∃𝑦2 ∈ R𝑝2 , 𝑧2 ∈ Z𝑑2

such that (𝑥,𝑦2, 𝑧2) ∈ 𝑀2. We claim that 𝑥 ∈ 𝑆 iff there exist 𝑥1,𝑥2 ∈ R𝑛,𝑦1 ∈
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R𝑝1 ,𝑦2 ∈ R𝑝2 , 𝑡 ∈ R, 𝑧1 ∈ Z𝑑1 , 𝑧2 ∈ Z𝑑2 , 𝑧′ ∈ Z such that

(𝑥1,𝑦1, 𝑧1) ∈𝑀1, (4.12a)

(𝑥2,𝑦2, 𝑧2) ∈𝑀2, (4.12b)

||𝑥− 𝑥1||22 ≤ 𝑡𝑧′, (4.12c)

||𝑥− 𝑥2||22 ≤ 𝑡(1− 𝑧′), (4.12d)

𝑡 ≥ 0, (4.12e)

0 ≤ 𝑧′ ≤ 1. (4.12f)

Equivalence follows from noting that 𝑧′ = 0 implies 𝑥 ∈ 𝑆1 and 𝑧′ = 1 implies 𝑥 ∈ 𝑆2

and that, e.g., for any point 𝑥1 ∈ 𝑆1 there exist solutions satisfying conditions (4.12)

and integrality on 𝑧1, 𝑧2 with 𝑧′ = 0.

The conditions (4.12) define a closed convex set 𝑀 ⊆ R3𝑛+𝑝1+𝑝2+𝑑1+𝑑2+2. Let

𝐶1 = proj𝑧(𝑀1), 𝐶2 = proj𝑧(𝑀2) and 𝐶 = proj𝑧(𝑀) be the projections onto the last

𝑑1, 𝑑2, 𝑑1 + 𝑑2 + 1 variables of respectively. We may see that 𝐶 = 𝐶1 × 𝐶2 × [0, 1],

so by Lemma 18, if 𝐶1 and 𝐶2 are bounded or rationally unbounded, then so is 𝐶.

Therefore 𝑆 is rational MICP representable.

Lemma 20. If 𝑆 is rational MILP representable then it is rational MICP repre-

sentable.

Proof. If 𝑆 has a rational MILP representation induced by a closed rational polyhe-

dron𝑀 then 𝐶 = proj𝑧(𝑀) is a closed rational polyhedron. Closed rational polyhedra

are either bounded or have a rational recession direction.

Corollary 1. If 𝑆1 and 𝑆2 are rational MILP representable then 𝑆1 ∪ 𝑆2 is rational

MICP representable.

Lemma 21. Suppose 𝑆 ⊆ R𝑛 has a rational MICP representation induced by 𝑀 with

MICP dimension 𝑑, and let ℛ : R𝑑 → R𝑑 be an invertible affine transformation. Then
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the set 𝑆 ′ ⊆ R𝑛 defined by

𝑥 ∈ 𝑆 ′ iff ∃𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦,ℛ(𝑧)) ∈𝑀, (4.13)

is rational MICP representable with MICP dimension at most 𝑑. Furthermore, if

ℛ maps integers to integers, i.e., ℛ(Z𝑑) ⊆ Z𝑑, then 𝑆 ′ ⊆ 𝑆, and if the inverse

transformation maps integers to integers, i.e., ℛ−1(Z𝑑) ⊆ Z𝑑 then 𝑆 ⊆ 𝑆 ′.

Proof. Define the extended affine transformationℛext : R𝑛+𝑝+𝑑 → R𝑛+𝑝+𝑑 byℛext(𝑥,𝑦, 𝑧) =

(𝑥,𝑦,ℛ(𝑧)). Let 𝑀 ′ = ℛ−1
ext(𝑀) be the image of 𝑀 under ℛ−1

ext. We claim that 𝑀 ′ in-

duces a rational MICP formulation of 𝑆 ′. Note (𝑥,𝑦,ℛ(𝑧)) ∈𝑀 iffℛext(𝑥,𝑦, 𝑧) ∈𝑀

iff (𝑥,𝑦, 𝑧) ∈𝑀 ′, so

𝑥 ∈ 𝑆 ′ iff ∃𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦, 𝑧) ∈𝑀 ′. (4.14)

Also, 𝑀 ′ is convex since it is the image of a convex set under an affine transformation.

Finally, proj𝑧(𝑀
′) is the image under the rational affine mapping ℛ−1 of proj𝑧(𝑀),

so proj𝑧(𝑀
′) is either bounded or rationally unbounded. The set 𝑀 ′ is closed because

𝑀 is closed and ℛ is invertible.

For the inclusion statements, suppose 𝑥 ∈ 𝑆 ′ with corresponding 𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑

such that (𝑥,𝑦,ℛ(𝑧)) ∈ 𝑀 . If ℛ(𝑧) ∈ Z𝑑 then 𝑥 ∈ 𝑆. Suppose now 𝑥 ∈ 𝑆 with

corresponding 𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦, 𝑧) ∈𝑀 . If ℛ−1(𝑧) ∈ Z𝑑 then 𝑥 ∈ 𝑆 ′.

Lemma 22. Suppose 𝑆 ⊆ R𝑛 has a rational MICP representation induced by 𝑀 with

MICP dimension 𝑑. Then the set 𝑆 ′ ⊆ R𝑛 defined by

𝑥 ∈ 𝑆 ′ iff ∃𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀, (4.15)

is rational MICP representable with MICP dimension at most 𝑑− 1.

Proof. Note that 𝑆 ′ can be called a relaxation of 𝑆 since it is derived by relaxing the

integrality restriction on the variable 𝑧0, so clearly 𝑆 ⊆ 𝑆 ′. Let 𝐶 be the projection of
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𝑀 onto the last 𝑑 variables and 𝐶 ′ the projection of 𝑀 onto the last 𝑑− 1 variables.

We need only show that 𝐶 ′ is either bounded or rationally unbounded. This follows

since 𝐶 ′ is the image of 𝐶 under the rational linear mapping that discards the first

dimension and acts as an identity on the remaining dimensions. Note that the set 𝑀

does not change in the definition of 𝑆 ′.

In the following lemma, following Rockafellar [78] we refer to aff(·) as the affine

hull of a set, int(·) and relint(·) as the interior and relative interior, respectively,

dom(·) the domain of a function and 𝜕· the subdifferential of a function.

Lemma 23. Let 𝐶 ⊆ R𝑑 be a convex set, ℎ : 𝐶 → R a nonpositive convex function

and (𝑥𝑖)𝑖∈J𝑘K ⊂ 𝐶 such that ℎ(𝑥1) = 0 and 𝑥1 ∈ relint
(︀
aff
(︀
(𝑥𝑖)𝑖∈J𝑘K

)︀
∩ 𝐶

)︀
. Then

ℎ(𝑥) = 0 for all 𝑥 ∈ aff
(︀
(𝑥𝑖)𝑖∈J𝑘K

)︀
∩ 𝐶.

Proof. After an affine transformation we may assume without loss of generality that

aff
(︀
(𝑥𝑖)𝑖∈J𝑘K

)︀
= R𝑑. Let ℎ̄ : R𝑑 → R ∩ {∞} so that ℎ̄(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝐶 and

ℎ̄(𝑥) = ∞ otherwise. We have that 𝑥1 ∈ int
(︀
dom

(︀
ℎ̄
)︀)︀

= int (𝐶) and hence 𝜕ℎ̄ (𝑥1)

is nonempty and bounded [78]. If there exist 𝑢 ∈ 𝜕ℎ̄ (𝑥1) ∖ {0} then for sufficiently

small 𝜀 > 0 we have 𝑥1 + 𝜀𝑢 ∈ int (𝐶) and 0 ≥ ℎ̄ (𝑥1 + 𝜀𝑢) ≥ ℎ̄ (𝑥1) + 𝜀||𝑢||2 > 0,

which is a contradiction. Hence 𝜕ℎ̄ (𝑥1) = {0} so ℎ (𝑥) = ℎ̄ (𝑥) ≥ ℎ̄ (𝑥1) = 0 for all

𝑥 ∈ 𝐶.

Lemma 24. Let 𝑟 ∈ Z𝑑 nonzero with gcd(𝑟1, . . . , 𝑟𝑑) = 1. Then there exists a 𝑑× 𝑑

unimodular matrix 𝑈 with 𝑟 as the last column.

Proof. Recall [73, p. 189]: A square invertible, integer matrix 𝐻 ∈ Z𝑑×𝑑 is said to

be in Hermite normal form if it is 1) lower triangular, 2) has positive entries on the

diagonal, and 3) has nonpositive entries off the diagonal with magnitude smaller than

the element on the diagonal for the same row. Then if 𝐴 is a square invertible matrix,

there exists a unimodular matrix 𝑈 such that 𝐴𝑈 = 𝐻 . Since 𝐴 is invertible, we

have 𝑈 = 𝐴−1𝐻 . Since 𝐻 is lower triangular, the last column of 𝑈 is a positive

integer multiple (𝐻𝑑𝑑) of the last column of 𝐴−1. We’ll use this property to prove the

claim.
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Now, let 𝐵 be a rational invertible matrix with 𝑟 on the last column (which is

always possible because we can complete 𝑟 into a rational basis of R𝑑). The matrix

𝐵 is rational so 𝐵−1 is as well. Let 𝑞 ∈ N be a positive number such that 𝑞𝐵−1

has all integer entries and consider the decomposition such that (𝑞𝐵−1)𝑈 = 𝐻 , i.e.,

𝑈 = 1
𝑞
𝐵𝐻 .

We see via this decomposition that there exists a unimodular matrix 𝑈 with last

column equal to the vector (𝐻𝑑𝑑/𝑞)𝑟. The unique solution to the system 𝑈𝑥 = 𝑟

is the vector (𝑞/𝐻𝑑𝑑)𝑒(𝑑), which must be integral since 𝑈 is unimodular. Therefore

(𝑞/𝐻𝑑𝑑) is a positive integer. Entries of unimodular matrices must be integral, so we

require (𝐻𝑑𝑑/𝑞)𝑟 ∈ Z𝑑. Since gcd(𝑟1, . . . , 𝑟𝑑) = 1 by assumption, we must have that

𝐻𝑑𝑑/𝑞 is also a positive integer. It follows that 𝐻𝑑𝑑/𝑞 = 1.

Lemma 25. Let 𝑀 be an MICP formulation for 𝑆 ⊆ R𝑛. Let 𝐴𝑧 = proj𝑥(𝑀 ∩

(R𝑛+𝑝 × {𝑧})). Then for any 𝑐 ∈ R𝑛, the function 𝑔𝑐(𝑧) : 𝐶 → R ∪ {∞} defined by

𝑔𝑐(𝑧) = sup{𝑐𝑇𝑥 : 𝑥 ∈ 𝐴𝑧} is concave.

Proof. Note 𝐴𝑧 is nonempty for 𝑧 ∈ 𝐶, so 𝑔𝑐(𝑧) is well defined. Choose any two

𝑧1, 𝑧2 ∈ 𝐶 and 𝜆 ∈ [0, 1]. We will show 𝑔𝑐(𝜆𝑧
1 + (1 − 𝜆)𝑧2) ≥ 𝜆𝑔𝑐(𝑧

1) + (1 −

𝜆)𝑔𝑐(𝑧
2). Let 𝑥1,𝑥2,𝑥3, · · · and 𝑦1,𝑦2,𝑦3, · · · be sequences contained in 𝐴𝑧1 and

𝐴𝑧2 respectively such that lim𝑖→∞ 𝑐
𝑇𝑥𝑖 = 𝑔𝑐(𝑧

1) and lim𝑖→∞ 𝑐
𝑇𝑦𝑖 = 𝑔𝑐(𝑧

2). Since 𝑀

is convex, it follows that for each 𝑖, 𝜆𝑥𝑖 + (1− 𝜆)𝑥𝑖 ∈ 𝐴𝜆𝑧1+(1−𝜆)𝑧2 , so

𝑔𝑐(𝜆𝑧
1 + (1− 𝜆)𝑧2) ≥ lim

𝑖→∞
𝑐𝑇 (𝜆𝑥𝑖 + (1− 𝜆)𝑦𝑖) = 𝜆𝑔𝑐(𝑧

1) + (1− 𝜆)𝑔𝑐(𝑧
2). (4.16)

Lemma 26. Let 𝑀 be an MICP formulation for 𝑆 ⊆ R𝑛. Let 𝐴𝑧 = proj𝑥(𝑀 ∩

(R𝑛+𝑝 × {𝑧})). Then for any 𝑐 ∈ R𝑛, the function 𝑓𝑐(𝑧) : 𝐶 → R ∪ {∞} defined by

𝑓𝑐(𝑧) = inf{𝑐𝑇𝑥 : 𝑥 ∈ 𝐴𝑧} is convex.

Proof. Analogous to proof of Lemma 25.

Lemma 27. Let 𝑙 ∈ R and let 𝑓 : [𝑙,∞)→ R ∪ {−∞} be an extended-value concave

function. If ∃𝑥 > 𝑥′ ∈ [𝑙,∞) such that 𝑓(𝑥) < 𝑓(𝑥′) then lim𝑥→∞ 𝑓(𝑥) = −∞.
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Proof. Look at the set of supergradients at 𝑥, which is in the relative interior of the

domain. A supergradient with zero or positive slope would contradict 𝑓(𝑥) < 𝑓(𝑥′),

so there has to be a supergradient with negative slope which forces 𝑓(𝑥) to −∞ as

𝑥→∞.

Lemma 28. Suppose 𝑆 ⊆ R𝑛 is a closed set with MICP representation induced by 𝑀 .

Let 𝐴𝑧 = proj𝑥(𝑀 ∩ (R𝑛+𝑝 × {𝑧})) and 𝐶 = proj𝑧(𝑀). Then 𝑆 =
⋃︀

𝑧∈(𝐶∩Z𝑑) cl(𝐴𝑧).

Proof. By definition, 𝑆 =
⋃︀

𝑧∈(𝐶∩Z𝑑)𝐴𝑧, so 𝑆 ⊆
⋃︀

𝑧∈(𝐶∩Z𝑑) cl(𝐴𝑧). Fix 𝑧 ∈ 𝐶 ∩ Z𝑑.

Since 𝐴𝑧 ⊆ 𝑆 and 𝑆 is closed, it follows that cl(𝐴𝑧) ⊆ 𝑆, hence the desired statement

holds.

Lemma 29. Let 𝑆 ⊆ R𝑛 be a set which has an MICP representation induced by 𝑀 .

Let 𝐶 = proj𝑧(𝑀) and 𝐴𝑧 = proj𝑥(𝑀 ∩ (R𝑛+𝑝 × {𝑧})). Let 𝑟 ∈ Z𝑑 and 𝑧 ∈ 𝐶 ∩ Z𝑑.

If the set ℓ𝑧 = {𝑧 + 𝜆𝑟 : 𝜆 ∈ R} ∩ 𝐶 is unbounded and ∃ a bounded set 𝑇 ⊂ R𝑛

and 𝜆′ such that ∀𝜆 ≥ 𝜆′ with 𝜆 ∈ Z, we have that 𝐴𝑧+𝜆𝑟 ⊆ 𝑇 , i.e., the 𝑧-projected

sets along ℓ𝑧 at integer 𝑧 points are eventually contained in a bounded region, then⋃︀
𝑧′∈ℓ𝑧 cl(𝐴𝑧′) =

⋃︀
𝑧′∈ℓ𝑧∩Z𝑑 cl(𝐴𝑧′), i.e., integrality can be relaxed along this ray modulo

closure.

Proof. Assume that 𝑧 + 𝜆𝑟 ∈ 𝐶 for all 𝜆 ≥ 0. Fix 𝑐 ∈ R𝑛 and let 𝑔𝑐(𝑧) = sup{𝑐𝑇𝑥 :

𝑥 ∈ 𝐴𝑧}. Recall from Lemma 25 that 𝑔𝑐 is concave over its domain 𝐶. Note that

since 𝑇 is bounded, there exist finite bounds 𝛼 and 𝛽 (depending on 𝑐 but not 𝜆, 𝑧,

or 𝑟) such that 𝛼 ≤ 𝑔𝑐(𝑧 + 𝜆𝑟) ≤ 𝛽 whenever 𝐴𝑧 ⊆ 𝑇 , i.e., whenever 𝜆 ≥ 𝜆′ and

𝜆 ∈ Z. We now claim that 𝑔𝑐(𝑧+𝜆𝑟) is nondecreasing as a function of 𝜆. If it strictly

decreases anywhere, then lim𝜆→∞ 𝑔𝑐(𝑧 + 𝜆𝑟) = −∞ by Lemma 27, which leads to a

contradiction with the lower bound.

Since the choice of 𝑐 was arbitrary, it follows that for any 𝜆1 ≤ 𝜆2 such that

𝑧 + 𝜆1𝑟, 𝑧 + 𝜆2𝑟 ∈ ℓ𝑧, 𝑔𝑐(𝑧 + 𝜆1𝑟) ≤ 𝑔𝑐(𝑧 + 𝜆2𝑟)∀𝑐 ∈ R𝑛. Seen as a function of 𝑐,

𝑔𝑐(𝑧) is the support function of 𝐴𝑧, so it follows that cl(𝐴𝑧+𝜆1𝑟) ⊆ cl(𝐴𝑧+𝜆2𝑟) [48, p.

225]. The desired claim (in the nontrivial ⊆ direction) follows by noting that for any

𝑧′ ∈ ℓ𝑧, there exists 𝑧′′ ∈ ℓ𝑧 ∩ Z𝑑 such that cl(𝐴𝑧′) ⊆ cl(𝐴𝑧′′).
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Corollary 2. Suppose 𝑆 ⊆ R𝑛 is a bounded set which has an MICP representation

induced by 𝑀 . Let 𝐶 = proj𝑧(𝑀) and 𝐴𝑧 = proj𝑥(𝑀∩(R𝑛+𝑝×{𝑧})). Let 𝑟 ∈ Z𝑑 and

𝑧 ∈ 𝐶 ∩ Z𝑑. If the set ℓ𝑧 = {𝑧 + 𝜆𝑟 : 𝜆 ∈ R} ∩ 𝐶 is unbounded then
⋃︀

𝑧′∈ℓ𝑧 cl(𝐴𝑧′) =⋃︀
𝑧′∈ℓ𝑧∩Z𝑑 cl(𝐴𝑧′), i.e., integrality can be relaxed along this ray modulo closure.

Proof. Take 𝑇 = 𝑆 in Lemma 29, since 𝐴𝑧 ⊆ 𝑆 ∀𝑧 ∈ 𝐶 ∩ Z𝑑.

4.3.2 Representability of compact sets

Theorem 1. Suppose 𝑆 ⊆ R𝑛 is a compact set which has a rational MICP represen-

tation. Then 𝑆 is a finite union of compact convex sets.

Proof. Let 𝑀 ⊆ R𝑛+𝑝+𝑑 be a convex set that induces a rational MICP formulation of

𝑆. Let 𝐶 = proj𝑧(𝑀) be the convex set which is bounded or rationally unbounded

by assumption. Let 𝐴𝑧 = proj𝑥(𝑀 ∩ (R𝑛+𝑝 × {𝑧})), so that, by Lemma 28, 𝑆 =⋃︀
𝑧∈(𝐶∩Z𝑑) cl(𝐴𝑧). If 𝐶 is bounded then 𝑆 is precisely a finite union of compact convex

sets. Suppose then that 𝐶 is unbounded. Since 𝐶 is rationally unbounded, let 𝑟 ∈ Z𝑑

such that the ray 𝑧 + 𝜆𝑟 ∈ 𝐶 ∀𝑧 ∈ 𝐶, 𝜆 ≥ 0.

We prove now that without loss of generality, we may assume 𝑟 = 𝑒(1). First,

rescale 𝑟 if necessary so that gcd(𝑟) = 1. Then there exists a 𝑑 × 𝑑 unimodular

matrix 𝑈 with 𝑟 as the first column via Lemma 24 (we can freely permute columns

of a unimodular matrix). The columns of the unimodular matrix 𝑈 form a lattice

basis of Z𝑑, so the matrix can be thought of as mapping from integers expressed in

the nonstandard basis (with 𝑟) to the standard basis. We have that 𝑥 ∈ 𝑆 iff ∃𝑦 ∈

R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦,𝑈𝑧) ∈𝑀 . Following Lemma 21, we can redefine 𝑀 to be

𝑀 ′ such that 𝑥 ∈ 𝑆 iff ∃𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦, 𝑧) ∈𝑀 ′ and 𝑒(1) is a ray of

𝐶 ′ := proj𝑧(𝑀
′).

Consider the set 𝑄 defined by

𝑥 ∈ 𝑄 iff ∃𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀. (4.17)

Note that formulation (4.17) is obtained solely by relaxing the integrality constraint
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Figure 4-3: The annulus is not rational MICP representable because it is compact
but not a finite union of compact convex sets (Theorem 1).

on the first component of the 𝑑 integer-constrained variables, so clearly 𝑆 ⊆ 𝑄 and

𝑄 is rational MICP representable with one fewer integer dimension via Lemma 22.

Corollary 2 combined with Lemma 28 imply that no new points are created in the

relaxation, i.e., 𝑄 = 𝑆. We now have a formulation for 𝑆 with one fewer dimension and

can repeat our argument until 𝐶 is bounded (it is trivially bounded when 𝑑 = 0).

This theorem implies that many sets are not rational MICP representable. This

includes the annulus (Figure 4-3), the set of rank 1 contained in some compact domain

(a more general result was proven in [65]), and the set {1/𝑛 : 𝑛 = 1, 2, . . .} ∪ {0}.

Furthermore, it follows that if the graph of a function over a compact domain is

compact and rational MICP representable, then the function is piecewise linear with

finitely many pieces, because the graph of a function is a convex set if and only if

it is affine in the interior of the set, and closedness of the graph (which is assumed)

implies that the function is continuous. In the following section we consider as well

epigraphs of functions.

4.3.3 Representability of epigraphs on a compact domain

Theorem 2. Let 𝑅 be a compact set and 𝑓 : 𝑅 → R such that the epigraph 𝑆 =

{(𝑥′,𝑥) ∈ R× 𝑅 : 𝑥′ ≥ 𝑓(𝑥)} is closed and rational MICP representable where there

exits an upper bound 𝑢 on 𝑓 such that whenever a 𝑧-projected set contains a point

(𝑥′,𝑥) it also contains (𝑢,𝑥). Then 𝑆 is a finite union of closed convex sets.

Proof. Let 𝑀 ⊆ R𝑛+𝑝+𝑑 be a convex set that induces a rational MICP formulation of
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𝑆. Let 𝐶 = proj𝑧(𝑀) be the convex set which is bounded or rationally unbounded

by assumption. Let 𝐴𝑧 = proj𝑥(𝑀 ∩ (R𝑛+𝑝 × {𝑧})). So that, by Lemma 28, 𝑆 =⋃︀
𝑧∈(𝐶∩Z𝑑) cl(𝐴𝑧). If 𝐶 is bounded then 𝑆 is precisely a finite union of closed convex

sets. Suppose then that 𝐶 is unbounded. Since 𝐶 is rationally unbounded, let 𝑟 ∈ Z𝑑

such that the ray 𝑧+𝜆𝑟 ∈ 𝐶 ∀𝑧 ∈ 𝐶, 𝜆 ≥ 0. By the same argument as in Theorem 1,

we may assume 𝑟 = 𝑒(1) without loss of generality, so the ray ℓ𝑧 := {𝑧+𝜆𝑒(1) : 𝜆 ≥ 0}

is contained in 𝐶 for all 𝑧 ∈ 𝐶.

Consider the set 𝑄 defined by

(𝑥′,𝑥) ∈ 𝑄 iff ∃𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥′,𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀. (4.18)

Note that formulation (4.18) is obtained solely by relaxing the integrality constraint

on the first component of the 𝑑 integer-constrained variables, so clearly 𝑆 ⊆ 𝑄 and

𝑄 is rational MICP representable with one fewer integer dimension via Lemma 22.

Let 𝐴′
𝑧 be the projection of 𝐴𝑧 onto the last 𝑛− 1 variables, i.e., onto the domain

𝑅 of 𝑓 . Let (𝑥′,𝑥) ∈ 𝑄 with corresponding 𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that

(𝑥′,𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀 . As in Lemma 29, we can argue because 𝑅 is compact that along a

ray we have the containment cl(𝐴′
(𝑧0,𝑧)

) ⊆ cl(𝐴′
(𝑧0+𝜆,𝑧)) for any 𝜆 ≥ 0. So in particular

there exists 𝑥′′ ∈ R such that (𝑥′′,𝑥) ∈ 𝑆, i.e., 𝑥 ∈ 𝑅, because cl(𝐴(⌈𝑧0⌉,𝑧)) ∈ 𝑆. In

terms of having points in 𝑄 that are not in 𝑆, we only need to worry about the case

𝑥′ < 𝑥′′ because since 𝑆 is an epigraph, 𝑥′ > 𝑥′′ implies (𝑥′,𝑥) ∈ 𝑆. If 𝑥′ < 𝑥′′ then

the function ℎ𝑥(𝑧) = inf{𝛽′ : (𝛽′,𝛽) ∈ 𝐴𝑧,𝛽 = 𝑥} increases at some point along the

ray ℓ(𝑧0,𝑧). By an extension of Lemma 26 we see that for any 𝑥 fixed, ℎ𝑥(𝑧) is convex

in 𝑧 ∈ 𝐶. Convexity combined with increasing at some point in ℓ(𝑧0,𝑧) implies that

lim𝜆→∞ ℎ𝑥(𝑧0 + 𝜆, 𝑧) = ∞ by Lemma 27. However, this contradicts our assumption

on the 𝑧-projected set of the formulation which implies ℎ𝑥(𝑧0 + 𝜆, 𝑧) ≤ 𝑢∀𝜆 ≥ 0

with 𝑧0 + 𝜆 ∈ Z. From this discussion we conclude that no new points are created

in the relaxation, i.e., 𝑄 = 𝑆. We now have a formulation for 𝑆 with one fewer

dimension and can repeat our argument until 𝐶 is bounded (it is trivially bounded

when 𝑑 = 0).
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...

Figure 4-4: The set {(𝑥, 𝑦) : 𝑦 ≥
√
𝑥, 0 ≤ 𝑥 ≤ 3} is not rational MICP representable

(with an additional technical condition) because it is not a finite union of convex sets;
see Theorem 2.

This result can be applied to show that epigraphs of nonconvex functions over a

compact domain may not be MICP representable, see, for example, Figure 4-4. In

fact, it follows that a closed epigraph for a function defined over a compact domain

is rational MICP representable if and only if the function is piecewise convex with

finitely many pieces.

4.3.4 Representability of subsets of the natural numbers

In [65] we looked at representability of the natural numbers. We proved an equivalence

between rational MICP and rational MILP union (finite set) using a broader definition

of rational MICP (allowing exclusion of finitely many points). Here we revisit this

question using the new, simplified definition. A key new observation is the closure of

rational MICP under finite unions (Lemma 19), a property we discovered after [65].

We also develop new machinery so the proof of the main result is simplified (c.f.

Lemma 5 from [65]).

Definition 11. We say that an infinite subset of the natural numbers 𝑆 ⊆ N is

periodic if ∃𝑡 ∈ N, 𝑡 > 0 such that 𝑥 ∈ 𝑆 then 𝑥+ 𝑟𝑡 ∈ 𝑆 ∀𝑟 ∈ N. We say 𝑡 is a period

of 𝑆 (periods are not unique).

Note that finite unions of infinite periodic sets are periodic.

Lemma 30. An infinite subset 𝑆 of the natural numbers is periodic iff it is rational

MILP representable.

116



Proof. (⇒): Suppose 𝑆 is periodic with period 𝑡. We will show that there is a finite

of rational numbers 𝑆0 such that 𝑆 = 𝑆0 + intcone(𝑡), because the right-hand side

is rational MICP representable. For every 𝑖 ∈ J𝑡− 1K either there exists a unique

minimal 𝑟𝑖 ∈ N such that 𝑖 + 𝑟𝑖𝑡 ∈ 𝑆 or 𝑖 + 𝑟𝑡 ̸∈ 𝑆 ∀𝑟 ∈ N. Supposing 𝑟𝑖 exists, then

𝑖+ (𝑟𝑖 + 𝑟′)𝑡 ∈ 𝑆 ∀𝑟′ ∈ N because 𝑆 is periodic, and all integers in 𝑆 with remainder

𝑖 modulo 𝑡 are generated in this manner. Define 𝑆0 be the collection of all such 𝑟𝑖 for

𝑖 ∈ J𝑡− 1K.

(⇐): Suppose 𝑆 is rational MICP representable. Then 𝑆 = 𝑆0 + intcone(𝑟) for

some finite set 𝑆0 ⊂ N and 𝑟 ∈ N. Then by definition 𝑆 is periodic with period 𝑟.

Lemma 31. Suppose 𝑆 ⊆ N is rational MICP representable with MICP dimension

𝑑. Then either 𝑆 is a finite set or there exists 𝑘 ∈ N such that 𝑆 = 𝑆0 ∪
⋃︀

𝑖∈J𝑘K 𝑆𝑖

where 𝑆0 an infinite periodic subset of N, and for each 𝑖 ∈ J𝑘K, 𝑆𝑖 is rational MICP

representable with MICP-dimension at most 𝑑− 1.

Proof. Let𝑀 ⊆ R1+𝑝+𝑑 be a convex set that induces an MICP formulation of 𝑆. If 𝑆 is

bounded then we’re done. Suppose 𝑆 is unbounded. Let 𝐶 := proj𝑧(𝑀) be the convex

set which is rationally unbounded by assumption. Let 𝐴𝑧 = proj𝑥(𝑀 ∩ (R1+𝑝×{𝑧}))

which for any 𝑧 ∈ 𝐶 ∩ Z𝑑 by assumption is equal to some element of N. Since 𝐶 is

rationally unbounded, let 𝑟 ∈ Z𝑑 such that the ray 𝑧+𝜆𝑟 ∈ 𝐶 ∀𝑧 ∈ 𝐶, 𝜆 ≥ 0. By the

same argument as in Theorem 1, we may assume 𝑟 = 𝑒(1) without loss of generality,

so the ray ℓ𝑧 := {𝑧 + 𝜆𝑒(1) : 𝜆 ≥ 0} is contained in 𝐶 for all 𝑧 ∈ 𝐶.

Let {𝑇𝑖}𝑖∈J2𝑑K be such that 𝐶 ∩Z𝑑 =
⋃︀

𝑖∈J2𝑑K 𝑇𝑖 and 𝑧𝑗 ≡ 𝑧′𝑗 mod 2 for all 𝑗 ∈ J𝑑K,

𝑖 ∈
q
2𝑑

y
and 𝑧, 𝑧′ ∈ 𝑇𝑖. Let 𝑆𝑖 =

⋃︀
𝑧∈𝑇𝑖

𝐴𝑧 be the subset of N generated by 𝑇𝑖. We

claim that Si is either an infinite periodic subset of N or is rational MICP

representable with MICP dimension at most 𝑑 − 1. This would prove the

desired result because there are finitely many 𝑆𝑖 sets and finite unions of periodic sets

are periodic, so we can take 𝑆0 to be the union of the 𝑆𝑖 sets that are periodic. Then

we may renumber the indices 𝑖 to match the statement in the lemma.

Define 𝑓(𝑧) := inf{𝑥 : 𝑥 ∈ 𝐴𝑧} and 𝑔(𝑧) := sup{𝑥 : 𝑥 ∈ 𝐴𝑧} Define ℎ : 𝐶 → R as

ℎ(𝑧) := 𝑓(𝑧)− 𝑔(𝑧). The function ℎ is concave, nonnegative, and takes values 0 for
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𝑧 ∈ 𝐶∩Z𝑑. For fixed 𝑖 ∈
q
2𝑑

y
we have 𝑧+𝑧′

2
∈ 𝐶∩Z𝑑 and ℓ𝑧+𝑧′

2
⊂ 𝐶 for any 𝑧, 𝑧′ ∈ 𝑇𝑖.

Then 𝐿 := conv
(︁{︁
ℓ𝑧, ℓ𝑧+𝑧′

2
, ℓ𝑧′

}︁)︁
is a subset of 𝐶 which importantly contains integer

points in its relative interior. Let 𝑧 be one such integer point. Then ℎ(𝑧) = 0 which

implies ℎ must be entirely zero over all 𝐿 by Lemma 23. This implies 𝑓(𝑧) = 𝑔(𝑧) is

both convex and concave on 𝐿 and so is affine. Then, since the choice of 𝑧, 𝑧′ ∈ 𝑇𝑖
was arbitrary there exist 𝛼𝑖 ∈ R𝑑, 𝛽𝑖 ∈ R such that 𝑓(𝑧) = 𝑧𝑇𝛼𝑖 + 𝛽𝑖 ∀𝑧 ∈ ℓ𝑧 for

any 𝑧 ∈ 𝑇𝑖. Let 𝑠𝑖 = 𝑒(1)𝑇𝛼𝑖. We know that 𝑓 takes nonnegative integer values at

integer points along a ray in direction 𝑒(1) so 𝑠𝑖 in particular must be a nonnegative

integer.

For the cases where si ̸= 0, we claim that the set of numbers 𝑆𝑖 is periodic

with period 𝑠𝑖. For any 𝑥 ∈ 𝑆𝑖, ∃𝑧 ∈ 𝐶 ∩ Z𝑑 such that 𝐴𝑧 = {𝑥} = {𝑓(𝑧)}. Then

𝑧 + 𝑒(1) ∈ 𝐶 ∩ Z𝑑 and 𝐴𝑧 = {𝑓(𝑧 + 𝑒(1))} = {𝑥+ 𝑠𝑖} so 𝑥+ 𝑠𝑖 ∈ 𝑆𝑖.

For the cases where si = 0, we will show that 𝑆𝑖 is rational MICP representable

with MICP dimension at most 𝑑 − 1. Note that 𝑆𝑖 is rational MICP representable

because it can be obtained by performing an invertible affine transformation on 𝐶.

That is, let 𝑧 ∈ 𝑇𝑖, then

𝑥 ∈ 𝑆𝑖 iff ∃𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦, 𝑧 + 2𝑧) ∈𝑀. (4.19)

Let 𝑀𝑖 be the convex set that induces the rational MICP representation of 𝑆𝑖 via

Lemma 21. Consider the set 𝑄𝑖 defined by

𝑥 ∈ 𝑄𝑖 iff ∃𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀𝑖. (4.20)

Note that formulation (4.20) is obtained solely by relaxing the integrality constraint

on the first component of the 𝑑 integer-constrained variables, so clearly 𝑆𝑖 ⊆ 𝑄𝑖 and

𝑄𝑖 is rational MICP representable with MICP dimension at most 𝑑−1 via Lemma 22.

We now claim that 𝑆𝑖 = 𝑄𝑖. Let 𝑥 ∈ 𝑄𝑖 with corresponding 𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈

Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈ 𝑀𝑖. Let 𝐶𝑖 = proj𝑧(𝑀𝑖) be the projection of 𝑀𝑖 onto

the last 𝑑 variables. Note that 𝑒(1) remains a recession direction of 𝐶𝑖. Therefore

(𝑧0 + 𝜆, 𝑧) ∈ 𝐶𝑖 ∀𝜆 ≥ 0, and in particular ∃𝑧′0 ∈ Z such that 𝑧′0 > 𝑧0 and (𝑧′0, 𝑧) ∈ 𝐶𝑖.
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We know that 𝑓(𝑧) = 𝑧𝑇𝛼𝑖 + 𝛽𝑖 on ℓ(𝑧′0,𝑧) and since 𝑠𝑖 = 0, the ray starting at (𝑧′0, 𝑧)

projects to a single natural number, i.e., 𝐴𝑧 = {
∑︀

𝑗∈J𝑑−1K 𝛼
𝑖
𝑗+1𝑧𝑗 + 𝛽𝑖} ∀𝑧 ∈ ℓ(𝑧′0,𝑧).

Since the 𝑧-projected sets are eventually bounded on the ray, we may apply Lemma 29

to conclude that 𝑥 ∈ 𝑆𝑖.

Theorem 3. Let 𝑆 ⊆ N with |𝑆| =∞. Then the following are equivalent:

(a) 𝑆 is rational MICP representable.

(b) There exists a finite set 𝑆0 and an infinite periodic set 𝑆1 such that 𝑆 = 𝑆0∪𝑆1.

(c) There exists a finite set 𝑆0 and a rational-MILP-representable set 𝑆1 such that

𝑆 = 𝑆0 ∪ 𝑆1.

Proof. (a) ⇒ (b): Repeatedly apply Lemma 31.

(b) ⇒ (c): Use Lemma 33 to obtain a rational MILP formulation of 𝑆1.

(c) ⇒ (a): Corollary 1.

With this result we can gain insight into rational MICP. For Theorems 1 and 2,

we do not know if the rationality assumption is essential for the result or if simply

provides helpful structure for the proof. This is not the case for the natural numbers.

For example, general (non-rational) MILP and also MICP can represent subsets of

N which are not periodic. This can even be achieved when the MICP formulation is

described with rational data. For instance we could require𝑀 to have a representation

of the form 𝐴𝑥 − 𝑏 ∈ 𝐾 where 𝐴 and 𝑏 are an appropriately sized rational matrix

and rational vector, and 𝐾 is a specially structured convex cone (e.g. the semidefinite

cone or a product of second-order cones defined as ℒ𝑛 := {(𝑡,𝑥) ∈ R𝑛 : ||𝑥||2 ≤ 𝑡})

or to have polynomial constraints with rational coefficients. Unfortunately these

restrictions can still result in representable sets which are not periodic and hence not

rational MILP representable. We present such an example below.

Example 3. For 𝑥 ∈ R let 𝑓(𝑥) = 𝑥− ⌊𝑥⌋. For 𝜀 > 0 consider the set

𝐾𝜀 = {𝑥 ∈ R2 : (𝑥2 + 𝜀, 𝑥1, 𝑥1) ∈ ℒ3, (2𝑥1 + 2𝜀, 𝑥2, 𝑥2) ∈ ℒ3, 𝑥1, 𝑥2 ≥ 0} (4.21)

= {𝑥 ∈ R2 :
√

2𝑥1 − 𝜀 ≤ 𝑥2 ≤
√

2𝑥1 +
√

2𝜀, 𝑥1, 𝑥2 ≥ 0} (4.22)
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and 𝑆𝜀 = {𝑥1 ∈ R : ∃𝑥2 s.t. (𝑥1, 𝑥2) ∈ 𝐾𝜀 ∩ Z2} = {𝑥 ∈ N : 𝑓(
√

2𝑥) /∈ (𝜀, 1−
√

2𝜀)}.

Let 𝜀0 < 1/(1 +
√

2) be rational (e.g. 𝜀 = 0.4). Suppose that for some 𝑎, 𝑏 ∈ N,𝑎 ≥ 1

it holds 𝑎𝑘 + 𝑏 ∈ 𝑆𝜀0 for all 𝑘 ∈ N. ∅ ̸= (𝜀0, 1 −
√

2𝜀0) ⊆ (0, 1), so by Kronecker’s

Approximation Theorem we have that there exist 𝑘0 ∈ N such that 𝑓(
√

2(𝑎𝑘0 + 𝑏)) ∈

(𝜀0, 1 −
√

2𝜀0) which is a contradiction. Therefore the set 𝑆𝜀0 is not periodic and in

particular it is not rational MILP representable.

Corollary 3. The intersection of two rational MICP representable sets is not in

general rational MICP representable.

Proof. The set 𝑆𝜀 of Example 3 is the intersection of two rational-MICP representable

sets: {𝑥1 ∈ Z : ∃𝑥2 ∈ Z s.t.
√

2𝑥1 − 𝜀 ≤ 𝑥2} and {𝑥1 ∈ Z : ∃𝑥2 ∈ Z s.t.𝑥2 ≤
√

2𝑥1 +
√

2𝜀}. The statement now follows from Theorem 3.

4.3.5 Representability of piecewise linear functions

Definition 12. The continuous function 𝒫 : R+ → R is a 𝒫𝒲ℒ-function if it is

piecewise linear on with breakpoints only at integer values. If, furthermore, 𝒫(𝑖) ∈

Q∀𝑖 ∈ N then we say 𝒫(𝑖) is a rational 𝒫𝒲ℒ-function.

𝒫𝒲ℒ-functions are uniquely defined by their values at the integers {𝒫(𝑖)}𝑖∈N.

We parameterize unit-step segments by their starting point and slope as 𝑃(𝑖,𝑥,𝑐) :=

conv({(𝑖, 𝑥), (𝑖+ 1, 𝑥+ 𝑐)}). The graph of 𝒫 is
⋃︀

𝑖∈N 𝑃(𝑖,𝒫(𝑖),𝒫(𝑖+1)−𝒫(𝑖)).

Definition 13. We say that a 𝒫𝒲ℒ-function 𝒫 is periodic if ∃𝑡 ∈ N, 𝑡 > 0 such that

∀𝑖 ∈ J𝑡− 1K and ∀𝑟 ∈ N, and 𝒫(𝑟𝑡+ 𝑖+ 1)− 𝒫(𝑟𝑡+ 𝑖) = 𝒫(𝑖+ 1)− 𝒫(𝑖). We say 𝑡

is a period of 𝑆 (periods are not unique).

Definition 14. We say that an infinite subset 𝑆 of segments is periodic if ∃𝑡 ∈ N, 𝑡 >

0 such that if for some 𝑖, 𝑥, 𝑐 we have 𝑃(𝑖,𝑥,𝑐) ⊂ 𝑆 then ∀𝑟 ∈ N 𝑃(𝑟𝑡+𝑖,𝑥′,𝑐) ⊂ 𝑆 for some

𝑥′. We say 𝑡 is a period of 𝑆 (periods are not unique).

A finite union of non-overlapping infinite periodic subsets of segments is also

periodic: take the product of the periods.
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Lemma 32. If a periodic infinite subset 𝑆 of segments is the graph of some continuous

𝒫𝒲ℒ-function 𝒫 then 𝒫 is periodic.

Lemma 33. Let 𝑆 be the graph of a rational 𝒫𝒲ℒ-function 𝒫. Then 𝒫 is periodic

iff 𝑆 is rational MILP representable. Furthermore, we can write an explicit rational

MILP formulation of 𝑆 where each 𝑧-projected set is a full segment.

Proof. (⇒): We will show that the segments in 𝑆 are finitely generated. Let 𝑡 be a

period of 𝒫 . Let 𝑇0 =
⋃︀

𝑖∈J𝑡−1K 𝑃(𝑖,𝒫(𝑖),𝒫(𝑖+1)−𝒫(𝑖)) be the graph of 𝒫 over the interval

[0, 𝑡]. 𝑇0 is a finite union of bounded rational polyhedra, because the endpoints

of the segments are rational numbers. Let 𝑟 = (𝑡,𝒫(𝑡) − 𝒫(0)). Then we claim

𝑆 = 𝑇0+intcone(𝑟), the right-hand side being rational MILP representable where each

𝐴𝑧 is a full segment. To prove the ⊇ direction consider 𝑃 := 𝑃(𝑖,𝒫(𝑖),𝑠)+𝜆𝑟 for some 𝑖 ∈

J𝑡− 1K and 𝜆 ∈ N where 𝑠 = 𝒫(𝑖+1)−𝒫(𝑖). 𝑃 is the segment 𝑃(𝑖+𝜆𝑡,𝒫(𝑖)+𝜆(𝒫(𝑡)−𝒫(0)),𝑠).

Since 𝒫 is periodic, the slope of 𝑃 matches the slope of 𝒫 between 𝑖+𝜆𝑡 and 𝑖+𝜆𝑡+1

by definition, so it remains to show that 𝒫(𝑖) + 𝜆(𝒫(𝑡)−𝒫(0)) = 𝒫(𝑖+ 𝜆𝑡). We can

write

𝒫(𝑖+ 𝜆𝑡) =
𝑖+𝜆𝑡∑︁
𝑘=0

(𝒫(𝑘 + 1)− 𝒫(𝑘)) + 𝒫(0) (4.23)

=
𝜆𝑡−1∑︁
𝑘=0

(𝒫(𝑘 + 1)− 𝒫(𝑘)) +
𝑖+𝜆𝑡∑︁
𝑘=𝜆𝑡

(𝒫(𝑘 + 1)− 𝒫(𝑘)) + 𝒫(0) (4.24)

= 𝜆(𝒫(𝑡)− 𝒫(0)) +
𝑖∑︁

𝑘=0

(𝒫(𝑘 + 1)− 𝒫(𝑘)) + 𝒫(0) (4.25)

= 𝜆(𝒫(𝑡)− 𝒫(0)) + 𝒫(𝑖). (4.26)

The ⊆ direction follows by reversing the same argument.

(⇐): Suppose 𝑆 is rational MILP representable. Then there exist 𝑟1, 𝑟2, . . . , 𝑟𝑡 ⊆

Z𝑛 and rational polytopes 𝑆1, 𝑆2, . . . , 𝑆𝑘 such that

𝑆 =
⋃︁
𝑖∈J𝑘K

𝑆𝑖 + intcone(𝑟1, 𝑟2, . . . , 𝑟𝑡). (4.27)
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In particular, for any subset 𝑇 ⊂ 𝑆, we have 𝑇 + intcone(𝑟1, 𝑟2, . . . , 𝑟𝑡) ⊂ 𝑆. Since

𝑆 is the graph of some piecewise linear function 𝒫 , one of the integer rays must have

a positive first component, say 𝑟11 > 0. Then 𝑟11 must be a period of 𝒫 because any

segment in 𝑆 translated by 𝑟1 retains the same slope and belongs to the graph of

𝒫 .

· ·
·

Figure 4-5: The graph of the piecewise linear function depicted above taking values
1, 0, 1.5, 3, 4.5, ... at 𝑖 = 0, 1, 2, 3, 4, ... respectively is rational MICP representable but
not rational MILP representable. The graph is representable if the first segment on
the left is excluded.

Lemma 33 is sufficient to separate rational MILP from rational MICP for the

graphs of rational 𝒫𝒲ℒ-functions. The graph depicted in Figure 4-5 is not MILP

representable because the corresponding function is not periodic. It is rational MICP

representable because it is the union of the segment on the left with the remaining

segments, which are rational MILP representable. We now investigate this question

further and see that, essentially, finite unions are the only representability power

gained.

We will consider, perhaps with some loss of generality, MICP formulations for the

graph of 𝒫 where each 𝑧-projected set is a complete unit-step line segment.

Lemma 34. Suppose 𝑆 is a subset of segments of the graph of a rational 𝒫𝒲ℒ-

function 𝒫 which is rational MICP or MICP representable with MICP dimension 𝑑

where each 𝑧-projected set is a full unit-step segment. Then either 𝑆 is bounded or

there exists a 𝑘 ∈ N such that 𝑆 = 𝑆0 ∪
⋃︀

𝑖∈J𝑘K 𝑆𝑘 where 𝑆0 a periodic infinite subset

of segments and for each 𝑖, 𝑆𝑖 is a rational MICP representable subset of segments

included in 𝑆 with MICP dimension at most 𝑑− 1.
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Proof. Let𝑀 ⊆ R2+𝑝+𝑑 be a convex set that induces an MICP formulation of 𝑆. If 𝑆 is

bounded then we’re done. Suppose 𝑆 is unbounded. Let 𝐶 := proj𝑧(𝑀) be the convex

set which is rationally unbounded by assumption. Let 𝐴𝑧 = proj𝑥(𝑀 ∩ (R1+𝑝×{𝑧}))

which for any 𝑧 ∈ 𝐶 ∩Z𝑑 by assumption is equal to the segment 𝑃𝑖 for some 𝑖. Since

𝐶 is rationally unbounded, let 𝑟 ∈ Z𝑑 such that the ray 𝑧 + 𝜆𝑟 ∈ 𝐶 ∀𝑧 ∈ 𝐶, 𝜆 ≥ 0.

By the same argument as in Theorem 1, we may assume 𝑟 = 𝑒(1) without loss of

generality, so the ray ℓ𝑧 := {𝑧 + 𝜆𝑒(1) : 𝜆 ≥ 0} is contained in 𝐶 for all 𝑧 ∈ 𝐶.

Let {𝑇𝑖}𝑖∈J2𝑑K be such that 𝐶 ∩Z𝑑 =
⋃︀

𝑖∈J2𝑑K 𝑇𝑖 and 𝑧𝑗 ≡ 𝑧′𝑗 mod 2 for all 𝑗 ∈ J𝑑K,

𝑖 ∈
q
2𝑑

y
and 𝑧, 𝑧′ ∈ 𝑇𝑖. Let 𝑆𝑖 =

⋃︀
𝑧∈𝑇𝑖

𝐴𝑧 be the subset of segments generated by

𝑇𝑖.

We claim that all segments in 𝑆𝑖 have the same slope. For fixed 𝑖 ∈
q
2𝑑

y
we

have 𝑧+𝑧′

2
∈ 𝐶∩Z𝑑 and ℓ𝑧+𝑧′

2
⊂ 𝐶 for any 𝑧, 𝑧′ ∈ 𝑇𝑖. Then 𝐿 := conv

(︁{︁
ℓ𝑧, ℓ𝑧+𝑧′

2
, ℓ𝑧′

}︁)︁
is a subset of 𝐶 which importantly contains integer points in its relative interior. Let

𝑧 be one such integer point. Then 𝐴𝑧 = 𝑃𝑗 for some 𝑗 with slope 𝑐 = 𝒫(𝑗+1)−𝒫(𝑗).

Define ℎ𝑐(𝑧) = sup{𝑥1 + (−1/𝑐)𝑥2 : 𝑥 ∈ 𝐴𝑧} − inf{𝑥1 + (−1/𝑐)𝑥2 : 𝑥 ∈ 𝐴𝑧}. We can

see that ℎ𝑐 is concave (as a sum of two functions which are concave by Lemmas 25

and 26), nonnegative, and takes value zero at 𝑧 and so must be entirely zero over all

𝐿 by Lemma 23. But ℎ𝑐(𝑧) = 0 implies that 𝐴𝑧 falls in an affine subspace of the form

{𝑥 ∈ R2 : 𝑥2 = 𝑐𝑥1 + 𝛾𝑧} for some 𝛾𝑧 ∈ R [48, p. 209], so all segments in 𝑆𝑖 must

have the same slope since the choice of 𝑧, 𝑧′ was arbitrary.

We will now characterize the starting points for the segments contained in 𝑆𝑖.

Define 𝑓1(𝑧) = inf{𝑥1 : 𝑥 ∈ 𝐴𝑧} and 𝑔1(𝑧) = sup{𝑥1 : 𝑥 ∈ 𝐴𝑧}. By Lemmas 26

and 25, 𝑓 is convex and 𝑔 is concave. Define ℎ′ : 𝐶 → R as ℎ′(𝑧) = 𝑔1(𝑧) − 𝑓1(𝑧).

Analogously to ℎ𝑐, ℎ′ is concave and nonnegative. It also satisfies ℎ′(𝑧) = 1 ∀𝑧 ∈

𝐶 ∩ Z𝑑 because by assumption 𝐴𝑧 is a segment that spans a unit step in the first

coordinate. Consider 𝐿 as before for some choice of 𝑧, 𝑧′ ∈ 𝑇𝑖. Then, by Lemma 23,

ℎ′ (𝑧) = 1 for all 𝑧 ∈ 𝐿 because 𝐿 has an integer point in its relative interior. It

follows that 𝑓1(𝑧) = 𝑔1(𝑧)− 1 ∀𝑧 ∈ 𝐿, so in particular 𝑓 is both concave and convex

and is therefore affine. Then, since the choice of 𝑧, 𝑧′ ∈ 𝑇𝑖 was arbitrary there

exist 𝛼𝑖 ∈ R𝑑, 𝛽𝑖 ∈ R such that 𝑓1(𝑧) = 𝑧𝑇𝛼𝑖 + 𝛽𝑖 ∀𝑧 ∈ ℓ𝑧 for any 𝑧 ∈ 𝑇𝑖. Let
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𝑠𝑖 = 𝑒(1)𝑇𝛼𝑖. We know that 𝑓1 takes nonnegative integer values at integer points

along a ray in direction 𝑒(1) so 𝑠𝑖 in particular must be a nonnegative integer.

For the cases where si ̸= 0, we claim that the set of segments 𝑆𝑖 is periodic.

Note that the set of segments is unbounded because 𝑓(𝑧) generates an infinite arith-

metic progression along any ray ℓ𝑧 for 𝑧 ∈ 𝑇𝑖. The latter combined with the observa-

tion that all segments in 𝑆𝑖 have the same slope implies that if 𝑃(𝑗,𝒫(𝑗),𝑐) is a segment

in 𝑆𝑖 then 𝑃(𝑗+𝑟𝑠𝑖,𝒫(𝑗+𝑟𝑠𝑖),𝑐) ⊂ 𝑆𝑖 ∀𝑟 ∈ N. Now, take the union of all 𝑆𝑖 for 𝑖 with 𝑠𝑖 ̸= 0

to obtain 𝑆0 in the statement of the lemma. There are at most 2𝑑 such 𝑖 so this is a

finite union.

For the cases where si = 0, we claim, to complete the proof, that the set of

segments 𝑆𝑖 is rational MICP representable with MICP dimension at most 𝑑 − 1.

Then we may renumber the indices 𝑖 to match the statement in the lemma. Note

that 𝑆𝑖 is rational MICP representable because it can be obtained by performing an

invertible affine transformation on 𝐶. That is, let 𝑧 ∈ 𝑇𝑖, then

𝑥 ∈ 𝑆𝑖 iff ∃𝑦 ∈ R𝑝, 𝑧 ∈ Z𝑑 such that (𝑥,𝑦, 𝑧 + 2𝑧) ∈𝑀. (4.28)

Let 𝑀𝑖 be the convex set that induces the rational MICP representation of 𝑆𝑖 via

Lemma 21. Consider the set 𝑄𝑖 defined by

𝑥 ∈ 𝑄𝑖 iff ∃𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈𝑀𝑖. (4.29)

Note that formulation (4.29) is obtained solely by relaxing the integrality constraint

on the first component of the 𝑑 integer-constrained variables, so clearly 𝑆𝑖 ⊆ 𝑄𝑖 and

𝑄𝑖 is rational MICP representable with MICP dimension at most 𝑑−1 via Lemma 22.

We now claim that 𝑆𝑖 = 𝑄𝑖.

Let 𝑥 ∈ 𝑄𝑖 with corresponding 𝑦 ∈ R𝑝, 𝑧0 ∈ R, 𝑧 ∈ Z𝑑−1 such that (𝑥,𝑦, 𝑧0, 𝑧) ∈

𝑀𝑖. Let 𝐶𝑖 = proj𝑧(𝑀𝑖) be the projection of 𝑀𝑖 onto the last 𝑑 variables. Note

that 𝑒(1) remains a recession direction of 𝐶𝑖, and the ray ℓ(𝑧0,𝑧) contains the ray

ℓ(⌈𝑧0⌉,𝑧), and both are contained in 𝐶𝑖. We claim that cl(𝐴𝑧) is a constant segment

∀𝑧 ∈ ℓ(𝑧0,𝑧) ∩ Z𝑑. Since 𝑠𝑖 = 0, we have that 𝑓1(𝑧) (properly redefined on 𝐶𝑖) is
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constant ∀𝑧 ∈ ℓ(⌈𝑧0⌉,𝑧). The value 𝑓1(𝑧) is the first component of the starting point

of the segment cl(𝐴𝑧) ⊆ 𝑆𝑖 when 𝑧 ∈ Z𝑑 ∩ 𝐶𝑖, and since segments in 𝑆𝑖 form part

of the graph of a 𝒫𝒲ℒ-function, there can be at most one segment in the range

[𝑓1(𝑧), 𝑓1(𝑧)], hence cl(𝐴𝑧) must be a unique constant segment ∀𝑧 ∈ ℓ(𝑧0,𝑧)∩Z𝑑. Now

we may apply Lemma 29 to conclude that 𝑥 ∈ 𝑆𝑖.

Theorem 4. Let 𝒫 be a rational 𝒫𝒲ℒ-function. Let 𝑆 be the graph of 𝒫. Then the

following are equivalent:

(a) 𝑆 is rational MICP representable where each 𝑧-projected set is a full unit-step

segment.

(b) There exists a finite subset of segments 𝑆0 and an infinite periodic subset of

segments 𝑆1 such that 𝑆 = 𝑆0 ∪ 𝑆1.

(c) There exists a finite subset of segments 𝑇0 and a rational-MILP representable

subset of segments 𝑇1 such that 𝑆 = 𝑇0 ∪ 𝑇1, where each 𝑧-projected set in the

MILP formulation is a full unit-step segment.

Proof. (a) ⇒ (b): Repeatedly apply Lemma 34.

(b) ⇒ (c): It is possible that the infinite periodic subset of segments 𝑆1 contains

gaps, i.e., does not define the graph of a piecewise linear function. However, since

𝑆0 is finite we can define 𝑇1 to be the infinite set of segments that begins after all

segments in 𝑆0. Define 𝑇0 = 𝑆 ∖ 𝑇1. 𝑇1 remains periodic and defines the graph of

a periodic piecewise linear function, so we can apply Lemma 33 to obtain a rational

MILP formulation of 𝑇1 (it does not matter that the function does not start at 0).

(c) ⇒ (a): Corollary 1. The 𝑧-projected sets are preserved from the MILP to the

MICP formulation.
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4.4 How many integer variables are needed: a nec-

essary condition

In [65], we developed the midpoint lemma as a necessary condition that we used

to show that a number of classes of sets are not MICP representable, regardless of

any rationality condition. Here we develop a variant of the midpoint lemma that

is a necessary condition for MICP representability using a fixed number of integer

variables.

Definition 15. We say that a set 𝑆 ⊆ R𝑛 is 𝑤-strongly nonconvex, if there exists

a subset 𝑅 ⊆ 𝑆 with |𝑅| = 𝑤 such that for all pairs 𝑥,𝑦 ∈ 𝑅,

𝑥+ 𝑦

2
̸∈ 𝑆, (4.30)

that is, an subset of points in 𝑆 of cardinality 𝑤 such that the midpoint between any

pair is not in 𝑆.

Lemma 35. (The finite-dimensional midpoint lemma) Let 𝑆 ⊆ R𝑛. If 𝑆 is

𝑤-strongly nonconvex, then 𝑆 cannot be MICP representable with MICP-dimension

less than ⌈log2(𝑤)⌉.

Proof. Suppose we have 𝑅 as in the statement above and there exists an MICP

formulation of 𝑆, that is, a closed convex set 𝑀 ⊂ R𝑛+𝑝+𝑑 such that 𝑥 ∈ 𝑆 iff

∃𝑧 ∈ Z𝑑, 𝑦 ∈ R𝑝 such that (𝑥,𝑦, 𝑧) ∈𝑀 . Then for each point 𝑥 ∈ 𝑅 we associate at

least one integer point 𝑧𝑥 ∈ Z𝑑 and a 𝑦𝑥 ∈ R𝑝 such that (𝑥,𝑦𝑥, 𝑧𝑥) ∈𝑀 . If there are

multiple such pairs of points 𝑧𝑥,𝑦𝑥 then for the purposes of the argument we may

choose one arbitrarily.

Suppose 𝑑 < ⌈log2(𝑤)⌉. We will derive a contradiction by proving that there exist

two points 𝑥,𝑥′ ∈ 𝑅 such that the associated integer points 𝑧𝑥, 𝑧𝑥′ satisfy

𝑧𝑥 + 𝑧𝑥
′

2
∈ Z𝑑. (4.31)

Indeed, this property combined with convexity of 𝑀 , i.e.,
(︁

𝑥+𝑥′

2
, 𝑦

𝑥+𝑦𝑥′

2
, 𝑧

𝑥+𝑧𝑥′

2

)︁
∈𝑀
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would imply that 𝑥+𝑥′

2
∈ 𝑆, which contradicts the definition of 𝑅.

Recall a basic property of integers that if 𝑖, 𝑗 ∈ Z and 𝑖 ≡ 𝑗 (mod 2), i.e., 𝑖 and 𝑗

are both even or odd, then 𝑖+𝑗
2
∈ Z. We say that two integer vectors 𝛼,𝛽 ∈ Z𝑑 have

the same parity if 𝛼𝑖 and 𝛽𝑖 are both even or odd for each component 𝑖 = 1, . . . , 𝑑.

Trivially, if 𝛼 and 𝛽 have the same parity, then 𝛼+𝛽
2
∈ Z𝑑. Given that we can

categorize any integer vector according to the 2𝑑 possible choices for whether its

components are even or odd, and we notice that from any collection of integer vectors

of size greater than 2𝑑 + 1 we must have at least one pair that has the same parity.

Therefore since |𝑅| = 𝑤 ≥ 2𝑑 + 1 we can find a pair 𝑥,𝑥′ ∈ 𝑅 such that their

associated integer points 𝑧𝑥, 𝑧𝑥′ have the same parity and thus satisfy (4.31).

It is interesting to recognize the corner cases 𝑤 = 2 and 𝑤 =∞. The former im-

plies that 𝑆 is not convex, and hence we need at least one integer variable. The latter

implies that 𝑆 is not MICP representable, corresponding to the original midpoint

lemma.

For finite 𝑤, an illustrative exaple is the binary hypercube 𝑆 = {0, 1}𝑛, for which

we may take 𝑅 = 𝑆 since no midpoints are in 𝑆. Note |𝑅| = 2𝑛, so the lemma implies

that we need at least 𝑛 integer variables to represent 𝑆. We can indeed write an MICP

(MILP) formulation for 𝑆 using 𝑛 binary variables . A simple MILP formulation is

𝑥 ∈ {0, 1}𝑛 iff ∃ 𝑧 ∈ Z𝑛 s.t. 𝑥 = 𝑧,0 ≤ 𝑧 ≤ 1. (4.32)
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Appendix A

Tables

Table A.1: MINLPLIB2 instances. “Conic rep” column indicates

which cones are used in the conic representation of the instance

(second-order cone and/or exponential). CPLEX is capable of solv-

ing only second-order cone instances. Times in seconds.

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

batch Exp 1 0.26 2 0.60 0.66 0.56 –

batchdes Exp 1 0.11 1 0.07 0.16 0.02 –

batchs101006m Exp 3 3.26 10 1.88 5.10 76.96 –

batchs121208m Exp 3 6.74 4 3.14 13.09 316.14 –

batchs151208m Exp 3 10.72 6 7.97 16.90 516.04 –

batchs201210m Exp 2 25.14 8 14.92 29.12 970.51 –

clay0203h SOC 5 1.42 9 0.90 0.70 1.28 0.35

clay0203m SOC 6 1.61 10 0.40 0.86 0.34 0.37

clay0204h SOC 1 1.85 3 3.60 7.14 5.72 1.61

clay0204m SOC 1 0.55 3 0.33 2.55 3.30 1.02

clay0205h SOC 3 24.40 4 20.89 78.19 168.28 8.93

clay0205m SOC 3 8.11 6 5.50 9.63 61.91 1.77

clay0303h SOC 5 2.41 9 0.97 1.53 1.96 0.54

clay0303m SOC 7 2.60 10 0.58 1.73 0.76 0.68

clay0304h SOC 9 13.87 11 5.27 2.50 26.33 1.42

clay0304m SOC 13 18.97 16 2.84 7.09 7.20 2.13

clay0305h SOC 3 52.97 4 23.81 1.97 139.27 23.32
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Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

clay0305m SOC 3 11.83 7 6.16 12.90 52.53 2.51

du-opt SOC 7 3.19 61 0.76 >36000 0.11 1.54

du-opt5 SOC 4 1.55 22 0.22 0.75 0.11 1.97

enpro48pb Exp 1 0.51 2 0.22 1.73 0.85 –

enpro56pb Exp 1 0.60 1 0.22 1.52 4.47 –

ex1223 ExpSOC 1 0.06 3 0.07 0.14 0.03 –

ex1223a SOC 0 0.02 1 0.03 0.11 0.02 0.01

ex1223b ExpSOC 1 0.08 3 0.07 0.15 0.02 –

ex4 SOC 2 1.06 2 0.13 1.15 0.25 0.86

fac3 SOC 2 0.19 6 0.15 0.24 0.16 0.07

netmod_dol2 SOC 7 49.97 33 167.49 33.93 293.76 12.58

netmod_kar1 SOC 12 8.05 102 56.45 3.32 122.98 7.68

netmod_kar2 SOC 12 8.14 102 56.35 3.30 122.28 7.66

no7_ar25_1 SOC 3 67.97 2 25.19 82.09 17601.54 54.34

no7_ar2_1 SOC 1 8.87 1 7.06 31.81 14957.66 21.83

no7_ar3_1 SOC 3 91.36 4 71.04 392.98 16495.95 126.09

no7_ar4_1 SOC 4 107.58 5 85.87 274.72 17865.83 48.97

no7_ar5_1 SOC 5 115.25 7 69.23 68.90 17452.47 32.60

nvs03 SOC 1 0.03 1 0.06 0.13 0.18 0.00

slay04h SOC 2 0.32 5 0.19 0.68 0.53 0.14

slay04m SOC 2 0.17 5 0.11 0.57 0.32 0.18

slay05h SOC 3 0.65 9 0.60 3.29 1.57 0.37

slay05m SOC 3 0.28 7 0.18 0.84 1.02 0.16

slay06h SOC 2 0.76 12 1.94 5.26 4.65 0.69

slay06m SOC 2 0.32 9 0.29 1.57 2.94 0.42

slay07h SOC 3 1.75 15 5.04 18.35 9.96 0.98

slay07m SOC 3 0.56 12 0.66 2.51 5.75 0.67

slay08h SOC 3 2.65 22 27.27 180.20 26.47 1.50

slay08m SOC 2 0.58 21 2.89 3.69 13.17 0.96

slay09h SOC 3 4.36 36 163.31 92.70 79.79 1.93

slay09m SOC 3 1.11 28 17.22 11.01 33.36 1.54

slay10h SOC 4 21.94 80 8155.02 11745.37 442.46 7.55
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Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

slay10m SOC 4 4.36 77 1410.08 516.81 167.81 1.80

syn05h Exp 1 0.07 2 0.09 0.31 0.17 –

syn05m Exp 1 0.04 2 0.07 0.28 0.14 –

syn05m02h Exp 1 0.15 1 0.06 0.33 0.11 –

syn05m02m Exp 1 0.08 1 0.07 0.33 0.29 –

syn05m03h Exp 1 0.23 1 0.07 0.33 0.13 –

syn05m03m Exp 1 0.12 1 0.07 0.32 0.30 –

syn05m04h Exp 1 0.29 1 0.07 0.38 0.19 –

syn05m04m Exp 1 0.17 1 0.08 0.32 0.61 –

syn10h Exp 0 0.10 1 0.04 0.20 0.09 –

syn10m Exp 1 0.08 2 0.04 0.25 0.23 –

syn10m02h Exp 1 0.27 1 0.09 0.46 0.21 –

syn10m02m Exp 1 0.16 2 0.09 0.42 3.05 –

syn10m03h Exp 1 0.38 1 0.08 0.59 0.24 –

syn10m03m Exp 1 0.23 1 0.08 0.54 10.47 –

syn10m04h Exp 1 0.53 1 0.11 0.52 0.19 –

syn10m04m Exp 1 0.34 1 0.11 0.72 40.41 –

syn15h Exp 1 0.22 1 0.06 0.29 0.14 –

syn15m Exp 1 0.10 2 0.07 0.30 0.32 –

syn15m02h Exp 1 0.51 1 0.09 0.47 0.18 –

syn15m02m Exp 1 0.24 1 0.09 0.44 5.51 –

syn15m03h Exp 1 44.15 1 0.13 0.99 0.23 –

syn15m03m Exp 1 0.38 2 0.11 0.66 25.67 –

syn15m04h Exp 1 1.47 1 0.14 1.61 0.32 –

syn15m04m Exp 1 0.50 2 0.14 1.43 186.20 –

syn20h Exp 2 0.33 2 0.10 0.34 0.20 –

syn20m Exp 1 0.13 2 0.06 0.39 1.31 –

syn20m02h Exp 2 1.07 2 0.15 0.57 0.41 –

syn20m02m Exp 2 0.44 2 0.10 0.73 381.88 –

syn20m03h Exp 1 1.21 1 0.13 1.52 0.78 –

syn20m03m Exp 2 0.64 2 0.15 2.00 993.73 –

syn20m04h Exp 1 1.81 1 0.19 2.41 1.11 –
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Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

syn20m04m Exp 2 0.91 2 0.27 9.77 1806.83 –

syn30h Exp 3 0.73 3 0.12 0.59 0.28 –

syn30m Exp 3 0.28 3 0.09 0.49 90.26 –

syn30m02h Exp 3 1.77 3 0.21 12.98 0.44 –

syn30m02m Exp 3 0.82 4 0.19 1.67 1041.13 –

syn30m03h Exp 3 2.24 3 0.40 11444.39 1.23 –

syn30m03m Exp 3 1.28 3 0.27 7.78 1878.32 –

syn30m04h Exp 3 3.51 3 0.49 >36000 2.74 –

syn30m04m Exp 3 1.81 4 0.42 37.94 3113.33 –

syn40h Exp 3 0.92 4 0.19 0.55 0.33 –

syn40m Exp 2 0.35 4 0.97 0.52 484.94 –

syn40m02h Exp 3 2.15 3 0.31 2073.62 1.03 –

syn40m02m Exp 3 1.18 3 0.24 5.74 1550.39 –

syn40m03h Exp 4 4.20 4 0.59 2.88 5.27 –

syn40m03m Exp 4 2.33 5 0.52 204.94 2921.63 –

syn40m04h Exp 3 8.56 4 1.02 >36000 20.31 –

syn40m04m Exp 5 4.61 5 0.87 974.05 8048.34 –

synthes1 Exp 2 0.06 3 0.04 0.24 0.11 –

synthes2 Exp 2 0.07 3 0.05 0.42 0.13 –

synthes3 Exp 2 0.09 6 0.10 0.34 0.13 –

rsyn0805h Exp 1 0.38 1 0.14 0.40 1.10 –

rsyn0805m Exp 2 0.49 2 0.25 0.87 53.62 –

rsyn0805m02h Exp 5 2.38 5 0.71 0.73 3.71 –

rsyn0805m02m Exp 4 2.41 4 2.16 11.21 1617.65 –

rsyn0805m03m Exp 3 3.26 3 4.08 10.71 2930.70 –

rsyn0805m04m Exp 2 2.32 2 2.31 19.17 5202.46 –

rsyn0810m Exp 1 0.37 2 0.24 1.17 211.18 –

rsyn0810m02h Exp 3 1.87 3 0.58 1.61 9.79 –

rsyn0810m02m Exp 3 2.20 4 5.78 49.36 3098.62 –

rsyn0810m03h Exp 3 3.19 3 1.36 1.99 26.42 –

rsyn0810m03m Exp 3 4.29 3 6.04 41.61 3582.39 –

rsyn0810m04h Exp 2 3.54 3 1.31 2.87 8.61 –

132



Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

rsyn0810m04m Exp 3 3.74 4 3.77 52.17 5943.63 –

rsyn0815h Exp 1 19.15 1 0.27 1.27 1.77 –

rsyn0815m Exp 2 0.49 2 0.23 1.21 171.89 –

rsyn0815m02m Exp 4 2.39 5 1.94 58.70 2565.52 –

rsyn0815m03h Exp 5 11.58 5 5.21 38.80 31.62 –

rsyn0815m03m Exp 5 5.66 4 4.59 217.30 3914.97 –

rsyn0815m04h Exp 3 6.16 3 2.03 4.73 20.55 –

rsyn0815m04m Exp 3 6.40 4 7.78 1609.07 7313.05 –

rsyn0820h Exp 2 1.02 3 0.42 2.04 1.55 –

rsyn0820m Exp 2 0.61 2 0.24 3.74 772.36 –

rsyn0820m02h Exp 2 2.28 3 0.59 2.83 90.89 –

rsyn0820m02m Exp 3 2.27 3 1.90 712.08 3138.98 –

rsyn0820m03h Exp 2 3.55 2 1.37 4.72 135.69 –

rsyn0820m03m Exp 3 4.08 3 5.14 6372.80 5220.60 –

rsyn0820m04h Exp 4 7.75 4 2.66 6.25 50.72 –

rsyn0820m04m Exp 3 7.22 3 8.65 13412.29 8314.96 –

rsyn0830h Exp 3 1.27 3 0.41 2.53 2.84 –

rsyn0830m Exp 4 0.96 4 0.37 3.37 1012.27 –

rsyn0830m02m Exp 5 10.95 5 1.83 131.12 9151.72 –

rsyn0830m03h Exp 2 4.77 2 1.45 6.70 59.98 –

rsyn0830m03m Exp 4 5.79 4 3.45 4044.25 10519.40 –

rsyn0830m04h Exp 3 8.44 3 2.35 14.23 209.80 –

rsyn0830m04m Exp 4 11.62 4 11.47 >36000 12709.29 –

rsyn0840h Exp 2 1.15 2 0.30 3.22 0.94 –

rsyn0840m Exp 3 0.86 2 0.26 2.96 1117.90 –

rsyn0840m02h Exp 2 2.97 3 0.72 5.10 8.43 –

rsyn0840m02m Exp 3 3.05 4 1.53 675.24 4443.70 –

rsyn0840m03h Exp 3 7.24 3 1.85 >36000 41.84 –

rsyn0840m03m Exp 5 7.92 5 2.47 4662.04 10511.67 –

rsyn0840m04h Exp 2 40.03 2 2.40 18.71 453.32 –

rsyn0840m04m Exp 4 18.14 4 7.62 >36000 15336.01 –

gbd SOC 0 0.01 1 0.04 0.19 0.12 0.00
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Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

ravempb Exp 1 0.79 4 0.33 0.80 0.42 –

port[...]cal050_1 SOC 12 32.66 989 >36000 133.43 452.49 3.31

m3 SOC 0 0.04 1 0.68 0.33 0.38 0.07

m6 SOC 1 0.39 1 0.16 2.07 658.83 0.17

m7 SOC 0 0.42 1 0.59 4.99 10431.03 0.69

m7_ar25_1 SOC 1 0.55 1 0.37 1.90 2763.66 0.16

m7_ar2_1 SOC 1 2.47 1 2.19 5.59 14002.89 1.58

m7_ar3_1 SOC 1 2.33 1 1.88 5.53 25222.75 0.82

m7_ar4_1 SOC 0 0.31 1 0.35 2.08 20537.24 0.84

m7_ar5_1 SOC 0 1.30 1 0.34 11.88 38924.33 0.98

fo7 SOC 4 38.44 3 27.68 89.18 3584.70 23.67

fo7_2 SOC 2 12.52 2 12.52 43.35 6298.85 4.88

fo7_ar25_1 SOC 4 22.95 4 9.87 21.94 16685.13 9.92

fo7_ar2_1 SOC 3 15.19 2 8.68 25.56 16123.12 11.04

fo7_ar3_1 SOC 3 27.00 3 11.61 28.79 16539.34 22.16

fo7_ar4_1 SOC 2 11.31 2 9.61 47.19 14674.12 10.27

fo7_ar5_1 SOC 1 4.44 1 5.66 19.63 16634.28 12.67

fo8 SOC 3 79.22 2 79.50 145.26 6383.13 52.92

fo8_ar25_1 SOC 4 141.68 3 45.80 121.69 23823.27 63.09

fo8_ar2_1 SOC 4 159.12 3 59.24 319.27 19979.89 60.09

fo8_ar3_1 SOC 1 10.34 1 14.65 70.68 20336.26 37.85

fo8_ar4_1 SOC 1 12.03 1 10.53 62.21 21961.80 62.60

fo8_ar5_1 SOC 1 29.66 2 23.26 94.63 24442.99 59.75

fo9 SOC 4 210.11 3 534.56 2079.40 4200.36 227.52

fo9_ar25_1 SOC 6 6390.32 6 1430.17 2819.53 25608.54 1240.89

fo9_ar2_1 SOC 2 490.08 2 205.19 896.42 19595.03 631.46

fo9_ar3_1 SOC 1 18.55 1 16.77 730.51 24190.96 103.84

fo9_ar4_1 SOC 1 56.32 2 40.77 1440.47 32284.58 785.75

fo9_ar5_1 SOC 3 131.24 2 39.47 724.35 30368.10 725.60

flay02h SOC 2 0.10 2 0.09 0.26 1.37 0.02

flay02m SOC 2 0.06 2 0.05 0.15 0.10 0.04

flay03h SOC 8 0.98 8 0.40 0.62 0.30 0.20
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Table A.1: MINLPLIB2 instances continued

Pajarito Bonmin SCIP Knitro CPLEX

Instance Conic rep. Iter Time Iter Time Time Time Time

flay03m SOC 8 0.44 8 0.17 0.26 0.14 0.24

flay04h SOC 24 23.43 24 19.92 3.75 6.60 1.14

flay04m SOC 22 8.24 22 4.43 1.98 2.54 1.00

flay05h SOC 164 6709.06 181 6583.08 221.67 357.72 96.62

flay05m SOC 171 5030.20 180 3258.45 51.94 118.96 68.91

flay06h SOC 31 >36000 30 >36000 13327.17 883.97 6958.36

flay06m SOC 56 >36000 68 >36000 2803.53 279.87 4752.04

o7 SOC 8 2778.14 9 1623.33 2074.22 3060.64 526.94

o7_2 SOC 5 803.25 5 435.47 899.41 6423.68 128.95

o7_ar25_1 SOC 3 421.01 4 259.10 433.72 16789.95 455.29

o7_ar2_1 SOC 1 72.03 1 41.51 209.30 15504.16 68.66

o7_ar3_1 SOC 3 1041.48 4 338.68 874.36 17193.08 875.63

o7_ar4_1 SOC 7 2665.40 7 1486.87 1080.95 17803.19 535.17

o7_ar5_1 SOC 4 662.44 4 309.86 545.20 21972.83 216.84

o8_ar4_1 SOC 3 7192.54 4 2736.05 6939.85 26448.75 8447.35

o9_ar4_1 SOC 6 14143.93 5 7248.84 34990.47 31569.13 21722.78

gams01 ExpSOC 6 23414.37 >19 >36000 >36000 >36000 –
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