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motivation: chance constrained optimal power flow

Optimal power flow
minimize

p,θ

∑
i∈G

cipi

subject to ∑
n∈B

Bbnθn =
∑
i∈Gb

pi + wf
b − db, ∀b ∈ B,

pmin
i ≤ pi ≤ pmax

i , ∀i ∈ G,
fmn = βmn(θm − θn), ∀{m,n} ∈ L,
− fmax

mn ≤ fmn ≤ fmax
mn , ∀{m,n} ∈ L,

where wf
b is (uncertain) contribution from wind.

∙ Min-cost network flow governed by physical transmission
constraints

∙ Above model is “DC approximation” to nonlinear AC powerflow
laws
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chance chance constraint model (bienstock et al., 2014)

Proposal: generators implement a proportional response policy to
random deviations in the wind forecast Ω.

pi = pi − αiΩ

∙ “Supply = Demand” always satisfied if ∑i αi = 1.

We then impose that the random line flows fmn stay within limits
with high probability:

P(fmn ≤ fmax
mn ) ≥ 1− ϵ

P(fmn ≥ −fmax
mn ) ≥ 1− ϵ

∙ Natural to treat these as soft constraints, no immediate
consequences if violated
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gaussian chance constraints

Line flow chance constraints can be expressed as linear chance
constraints of the form

Pξ(xTξ ≤ b) ≥ 1− ϵ. (1)

If ξ is jointly Gaussian with known mean and covariance and ϵ ≤ 1
2 ,

then (1) is representable as a single second-order cone constraint,
convex in x and b.

Gaussian assumption can be relaxed by introducing uncertainty sets
on mean and covariance (Bienstock et al., 2014; Lubin et al., 2015)
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improving the power flow model

Voltage-aware optimal power flow (Chertkov)

minimize
p,θ

∑
i∈G

cipi

subject to ∑
n∈B

Bbnθn =
∑
i∈Gb

pi + wf
b − db, ∀b ∈ B,

∑
n∈B

Bbnvn =
∑
i∈Gb

qi + wfq
b − dq

b, ∀b ∈ B,

pmin
i ≤ pi ≤ pmax

i , ∀i ∈ G,
qmin
i ≤ qi ≤ qmax

i , ∀i ∈ G,
fpmn = βmn(θm − θn), ∀{m,n} ∈ L,
fqmn = βmn(vm − vn), ∀{m,n} ∈ L,

(fpmn)
2 + (fqmn)

2 ≤ (fmax
mn )2, ∀{m,n} ∈ L,
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Active and reactive power flow on the same physical lines,
transmission is limited by the norm,

(fpmn)
2 + (fqmn)

2 ≤ (fmax
mn )2, ∀{m,n} ∈ L,

Using a similar model to account for uncertainty in wind, we end up
with a chance constraint of the form

Pξ

(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1− ϵ,

where a,b, c,d are decision variables.
Is this a convex constraint??
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Not convex for ϵ = 0.445

P((xξ1)2 + (yξ2)2 ≤ 1) ≥ 1− ϵ
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Not convex for ϵ = 0.445

P((xξ1)2 + (yξ2)2 ≤ 1) ≥ 1− ϵ

∙ Counterexample does not apply for smaller ϵ, but anyway let’s
look for approximations
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summary of results

∙ Simpler constraint Pξ

(
|aTξ + b| ≤ k

)
≥ 1− ϵ is convex

∙ Theoretically tractable by separation oracles, we give SOCP
approximation with provable approximation guarantee.

∙ Using these absolute value constraints, we obtain a
conservative approximation to the quadratic chance constraint

∙ Favorable comparison with alternative approximations via
robust optimization and CVaR (Nemirovski and Shapiro, 2007)
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preliminaries: sϵ

Define
Sϵ := {(x, y) :

∫ y
x φ(t)dt ≥ 1− ϵ} = {(x, y) : Φ(y)− Φ(x) ≥ 1− ϵ}.

Then the set Sϵ is convex for ϵ ∈ (0, 1).
Proof: Left-hand side is log-concave.
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Figure: Sϵ for ϵ = 0.6, 0.7, 0.8, 0.9, 0.95
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preliminaries: s̄ϵ

Let

S̄ϵ := cl{(x, y, z) : (x/z, y/z) ∈ Sϵ, z > 0}
= cl{(x, y, z) : Φ(y/z)− Φ(x/z) ≥ 1− ϵ, z > 0}
= cone(Sϵ × {1})

be the conic hull of Sϵ. Then S̄ϵ is convex.
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Figure: S̄ϵ
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convexity

Let ξ be a vector of i.i.d. standard Gaussian random variables and
0 < ϵ ≤ 1

2 . Then the set

{(a,b, k) ∈ Rn × R× R : P(|aTξ + b| ≤ k) ≥ 1− ϵ}

is convex.
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{(a,b, k) ∈ Rn × R× R : P(|aTξ + b| ≤ k) ≥ 1− ϵ}

Proof:
P(|aTξ + b| ≤ k) ≥ 1− ϵ

iff
P(−k− b ≤ aTξ ≤ k− b) ≥ 1− ϵ

iff
P
(
−k− b
||a|| ≤ aTξ

||a|| ≤
k− b
||a||

)
≥ 1− ϵ

iff
(−k− b, k− b, ||a||) ∈ S̄ϵ

iff
(
ϵ ≤ 1

2
)

∃ t ≥ ||a|| such that (−k− b, k− b, t) ∈ S̄ϵ
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{(a,b, k) ∈ Rn × R× R : P(|aTξ + b| ≤ k) ≥ 1− ϵ} =

proja,b,k
{
(a,b, k, t) : t ≥ ||a||, (−k− b, k− b, t) ∈ S̄ϵ

}
∙ Representation using standard SOC constraint plus
nonstandard “Gaussian integral” cone.

∙ Theoretically tractable via separation oracles
∙ Don’t know of any solvers which support as is

∙ Will develop polyhedral approximation of S̄ϵ
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2-constraint outer approximation of sϵ
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∙ With two linear constraints, we guarantee that chance
constraint holds with 2ϵ. (Can be made conservative.)

∙ Proof : split into two linear chance constraints
P(aTξ + b ≤ k) ≥ 1− ϵ, P(aTξ + b ≥ −k) ≥ 1− ϵ
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3-constraint outer approximation of sϵ
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∙ With three linear constraints, we guarantee that chance
constraint holds with 1.25ϵ.

∙ Proof :

see the paper
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approximating quadratic chance constraints

Fix ϵ < 1
2 and β ∈ (0, 1). If ∃ f1, f2 such that

P(|aTξ + b| ≤ f1) ≥ 1− βϵ

P(|cTξ + d| ≤ f2) ≥ 1− (1− β)ϵ

f21 + f22 ≤ k

then
P
(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1− ϵ.

Proof:

Union bound
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Proposed a convex, tractable (via SOCP) approximation for

P
(
(aTξ + b)2 + (cTξ + d)2 ≤ k

)
≥ 1− ϵ.

What about other approaches?

∙ Robust optimization
∙ CVaR
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robust approximation

Choose suitable uncertainty set U and enforce

(aTζ + b)2 + (cTζ + d)2 ≤ k, ∀ ζ ∈ U .

If U is ellipsoidal, tractable via SDP (Ben Tal et al., 2009).

∙ Little guidance on choosing U to enforce chance constraint
under Gaussian distribution.

∙ Naive approach: choose such that P(ξ ∈ U) = 1− ϵ.
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“cvar” approximation

Proposed by Nemirovski and Shapiro (2007), rewrite constraint as

E
[
I((aTξ + b)2 + (cTξ + d)2 − k)

]
≤ ϵ,

where I(t) = 1 if t ≥ 0 and 0 otherwise. Any convex upper bound on
I yields a convex conservative approximation. “CVaR” approximation
constructs the best convex upper bound on I.

∙ Convex, but membership requires multidimensional integration
∙ Misconception: not the “best” convex approximation to the
original constraint
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three proposed approximations

1. “Two-sided” approximation via absolute value chance
constraints (SOCP)

2. Robust optimization approximation (SDP)
3. CVaR (Multidimensional integration)
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Figure: P((xξ1)2 + (yξ2)2 ≤ 1) ≥ 1− ϵ, ϵ = 0.5
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Figure: P((xξ1)2 + (yξ2)2 ≤ 1) ≥ 1− ϵ, ϵ = 0.05
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conclusions

∙ No approximation dominates another, but “two-sided” is most
tractable

∙ JuMPChance modeling extension for JuMP supports these
constraints

∙ Power systems case study underway with Y. Dvorkin and L.
Roald

http://arxiv.org/abs/1507.01995
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Thanks! Questions?
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