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MOTIVATION: CHANCE CONSTRAINED OPTIMAL POWER FLOW

Optimal power flow
minpi’rpizeZc,-pi
i€g
subject to
Zanan = ZPJ+W{, —dy, VbeB,
nen i€Gy
p"" < p; < p'™*, Vieg,
fmn = Bun(Om — 6n), Y{m,n} € L,
- mgx Sfmn < mng v{m,n} €L,

where W’; is (uncertain) contribution from wind.

- Min-cost network flow governed by physical transmission
constraints

- Above model is “DC approximation” to nonlinear AC powerflow
laws



CHANCE CHANCE CONSTRAINT MODEL (BIENSTOCK ET AL., 2014)

Proposal: generators implement a proportional response policy to
random deviations in the wind forecast €.

p; = pi — a2

- “Supply = Demand” always satisfied if ). a; = 1.



CHANCE CHANCE CONSTRAINT MODEL (BIENSTOCK ET AL., 2014)

Proposal: generators implement a proportional response policy to
random deviations in the wind forecast €.

p; = pi — a2

- “Supply = Demand” always satisfied if ). a; = 1.

We then impose that the random line flows f,,, stay within limits
with high probability:

IP)(fmn < mgx) 2 1—e¢
IP)(fmn N mgx) >1—¢

- Natural to treat these as soft constraints, no immediate
consequences if violated



GAUSSIAN CHANCE CONSTRAINTS

Line flow chance constraints can be expressed as linear chance
constraints of the form

Pe(X'€ <b)>1—e. (1)

If ¢ is jointly Gaussian with known mean and covariance and e < 1,
then (1) is representable as a single second-order cone constraint,
convex in x and b.



GAUSSIAN CHANCE CONSTRAINTS

Line flow chance constraints can be expressed as linear chance
constraints of the form

Pe(X'€ <b)>1—e. (1)

If ¢ is jointly Gaussian with known mean and covariance and e < 1,
then (1) is representable as a single second-order cone constraint,
convex in x and b.

Gaussian assumption can be relaxed by introducing uncertainty sets
on mean and covariance (Bienstock et al., 2014; Lubin et al., 2015)



IMPROVING THE POWER FLOW MODEL

Voltage-aware optimal power flow (Chertkov)

minirpizeZc,-pi
’ i€g

subject to

Zanan:ZPmLW{,—db, Vb € B,

neB i€Gy
> Bonva =Y gi+wf —dj, vben,
neB i€Gy

plmin <pi < pmax, Vi e g,
g < qi < q'™*, Vieg,
ﬁnn an 9m en), V{m, n} e L,
= Bmn(Vim — Va), Y{m,n} € L,
(frn)? 4+ (Fn)? < (Fp2)2 ¥{m,n} € L,



Active and reactive power flow on the same physical lines,
transmission is limited by the norm,

(f?nn ﬁnn S Za V{m,n} € ‘67



Active and reactive power flow on the same physical lines,
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Using a similar model to account for uncertainty in wind, we end up
with a chance constraint of the form

Pe ("€ + b)* + (e +d)? < k) > 1—¢,

where a, b, ¢, d are decision variables.



Active and reactive power flow on the same physical lines,
transmission is limited by the norm,

(fn)? + (fn)? < (FRn)?% V{m,n} € L,

Using a similar model to account for uncertainty in wind, we end up
with a chance constraint of the form

Pe ("€ + b)* + (e +d)? < k) > 1—¢,

where a, b, ¢, d are decision variables.

Is this a convex constraint??



Not convex for e = 0.445
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Not convex for e = 0.445

P(Xa)? + (Y& <) >1—¢

- Counterexample does not apply for smaller ¢, but anyway let’s
look for approximations



SUMMARY OF RESULTS

- Simpler constraint P¢ (|a’¢ + b| < k) > 1— ¢ is convex

- Theoretically tractable by separation oracles, we give SOCP
approximation with provable approximation guarantee.

- Using these absolute value constraints, we obtain a
conservative approximation to the quadratic chance constraint

- Favorable comparison with alternative approximations via
robust optimization and CVaR (Nemirovski and Shapiro, 2007)



PRELIMINARIES: S,

Deﬁne
Sei={(xy): [l et dt>1— e} = {(x.y) : ®y) — b(x) > 1€},
Then the set S, is convex for € € (0,1).

Proof: Left-hand side is log-concave.



Figure: S, for ¢ = 0.6,0.7,0.8,0.9,0.95



PRELIMINARIES: S,

Let

Sc:=cl{(x,y,2) : (x/2,y/2) € Sc,z > 0}
=cl{(x,y,2) : d(y/2) — ®(x/2) > 1—¢€,2> 0}
=cone(S. x {1})

be the conic hull of S.. Then S. is convex.
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Figure: S,
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CONVEXITY

Let ¢ be a vector of i.i.d. standard Gaussian random variables and
0 < e < 1. Then the set

{(a,b,R) e R" xR xR :P(Ja"é + b| <R) >1—¢}

is convex.
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Proof:

iff

iff

{(a,b,R) eER" xR xR:P(|la"¢ +b| <R)>1—¢}

P(la"¢ +b| <R)>1—¢
P(—k—b<a¢€<RkR—b)>1—¢

—kh — T _
lall— llall = [lall

(_k_b7k_ baHa”) €§€

3t > ||a|| such that (—k — b,k — b, t) € S,
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{(a,b,R) eER" xR xR:P(la"é +b| <R)>1—¢} =
Projapr {(a,b, R t): t>lal|,(—k— b,k —b,t) €5}

- Representation using standard SOC constraint plus
nonstandard “Gaussian integral” cone.

- Theoretically tractable via separation oracles
- Don’t know of any solvers which support as is
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{(a,b,R) eER" xR xR:P(la"é +b| <R)>1—¢} =
proja,b,k {(Cl,b, k’ t) itz ||G||,(—k - b,k’ - b,t) € 36}

- Representation using standard SOC constraint plus
nonstandard “Gaussian integral” cone.

- Theoretically tractable via separation oracles
- Don’t know of any solvers which support as is
- Will develop polyhedral approximation of S,
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2-CONSTRAINT OUTER APPROXIMATION OF S,

3.0

- With two linear constraints, we guarantee that chance
constraint holds with 2e. (Can be made conservative.)

- Proof: split into two linear chance constraints
P(@'¢é+b<R)>1—¢P(aé+b>—-R)>1—c¢
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3-CONSTRAINT OUTER APPROXIMATION OF S,

- With three linear constraints, we guarantee that chance
constraint holds with 1.25e.

- Proof:



3-CONSTRAINT OUTER APPROXIMATION OF S,

- With three linear constraints, we guarantee that chance
constraint holds with 1.25e.

- Proof: see the paper



APPROXIMATING QUADRATIC CHANCE CONSTRAINTS

Fixe < 3 and 8 € (0,1). If 3 fy, f, such that

P(la’eé+b| < f1) > 1— Be
P(lcTeé+d| <fo) >1—-(1-B)e
f+H<k
then
P((@¢+ b+ (c"¢+dP <R)>1-e

Proof:



APPROXIMATING QUADRATIC CHANCE CONSTRAINTS

Fixe < 3 and 8 € (0,1). If 3 fy, f, such that

P(la’eé+b| < f1) > 1— Be
P(lcTeé+d| <fo) >1—-(1-B)e
f+H<k
then
P((@¢+ b+ (c"¢+dP <R)>1-e

Proof: Union bound



Proposed a convex, tractable (via SOCP) approximation for
P((@’¢+b)?+ (¢ +dy’ <k) >1-ce

What about other approaches?
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Proposed a convex, tractable (via SOCP) approximation for
P((@’¢+b)?+ (¢ +dy’ <k) >1-ce
What about other approaches?

- Robust optimization
- CvaR
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ROBUST APPROXIMATION

Choose suitable uncertainty set ¢/ and enforce
(@"¢+b)? + ("¢ +d)?> <R,VC eU.
If 4 is ellipsoidal, tractable via SDP (Ben Tal et al., 2009).

- Little guidance on choosing U/ to enforce chance constraint
under Gaussian distribution.

- Naive approach: choose such that P(§¢ e ) =1 —e.
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“CVAR” APPROXIMATION

Proposed by Nemirovski and Shapiro (2007), rewrite constraint as
E [I((a"¢ + b)* + (c"¢ +d)* — R)] <,

where I(t) = 1if t > 0 and 0 otherwise. Any convex upper bound on
| yields a convex conservative approximation. “CVaR” approximation
constructs the best convex upper bound on |.

- Convex, but membership requires multidimensional integration

- Misconception: not the “best” convex approximation to the
original constraint
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THREE PROPOSED APPROXIMATIONS

1. “Two-sided” approximation via absolute value chance
constraints (SOCP)

2. Robust optimization approximation (SDP)
3. CVaR (Multidimensional integration)
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Figure: P((x&1)” + (V&) <1)>1—¢€€e=0.5
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Figure: P((x&1)” + (y&2)* <1) > 1—¢e=0.05
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CONCLUSIONS

- No approximation dominates another, but “two-sided” is most
tractable

- JuMPChance modeling extension for JuMP supports these
constraints

- Power systems case study underway with Y. Dvorkin and L.
Roald

http://arxiv.org/abs/1507.01995
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http://arxiv.org/abs/1507.01995

THANKS! QUESTIONS?



